D:\文件及下载相关\文档\Visual Studio \Projects\image_match3\image_match
#include "opencv2/core/core.hpp"
#include "highgui.h"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp" using namespace cv;
using namespace std; int main(int argc, char** argv)
{
//待匹配的两幅图像,其中img1包括img2,也就是要从img1中识别出img2
//Mat img1 = imread("book_in_scene.png");
//Mat img2 = imread("book2.png");
Mat img1 = imread("003.png");
Mat img2 = imread("004.png"); Mat image01;
Mat image02;
cvtColor(img1,image01,CV_RGB2GRAY);
cvtColor(img2,image02,CV_RGB2GRAY);
SIFT sift1, sift2; vector<KeyPoint> key_points1, key_points2; Mat descriptors1, descriptors2, mascara; sift1(img1,mascara,key_points1,descriptors1);
sift2(img2,mascara,key_points2,descriptors2); //实例化暴力匹配器——BruteForceMatcher
BruteForceMatcher<L2<float>> matcher;
//定义匹配器算子
vector<DMatch>matches;
//实现描述符之间的匹配,得到算子matches
matcher.match(descriptors1,descriptors2,matches); //提取出前3个最佳匹配结果
nth_element(matches.begin(), //匹配器算子的初始位置
matches.begin()+, // 排序的数量
matches.end()); // 结束位置
//剔除掉其余的匹配结果
matches.erase(matches.begin()+, matches.end()); namedWindow("SIFT_matches");
Mat img_matches;
//在输出图像中绘制匹配结果
drawMatches(img1,key_points1, //第一幅图像和它的特征点
img2,key_points2, //第二幅图像和它的特征点
matches, //匹配器算子
img_matches, //匹配输出图像
Scalar(,,)); //用白色直线连接两幅图像中的特征点
imshow("SIFT_matches",img_matches); vector<Point2f> imagePoints1,imagePoints2;
for(int i=;i<;i++)
{
imagePoints1.push_back(key_points1[matches[i].queryIdx].pt);
imagePoints2.push_back(key_points2[matches[i].trainIdx].pt);
} Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
//Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2);     
cout<<"变换矩阵为:\n"<<homo<<endl<<endl;//输出映射矩阵  
//图像配准  
Mat imageTransform1,imageTransform2;
warpPerspective(image01,imageTransform1,homo,Size(image02.cols,image02.rows));
imshow("经过透视矩阵变换后",imageTransform1);
waitKey(); return ;
}

Projects\image_match3图像特征匹配调试记录-LMLPHP

 Mat img1 = imread("003.png");
Mat img2 = imread("004.png");

测试两个方向拍摄的熊娃娃:

Projects\image_match3图像特征匹配调试记录-LMLPHP

Projects\image_match3图像特征匹配调试记录-LMLPHP

对海面舰船目标的MUSIC高精度定位方法研究(图文) - 期刊论文网 http://www.pinjiao.com/lunwenqikan/kejixiaolunwen/lunwen21906.html

05-11 22:13