【机器学习详解】SMO算法剖析

转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754

CSDN−勿在浮沙筑高台

本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的。推荐参看SMO原文中的伪代码。

1.SMO概念

上一篇博客已经详细介绍了SVM原理,为了方便求解,把原始最优化问题转化成了其对偶问题,因为对偶问题是一个凸二次规划问题,这样的凸二次规划问题具有全局最优解,如下: 
【机器学习详解】SMO算法剖析(转载)-LMLPHP 
其中(xi,yi)表示训练样本数据,xi为样本特征,yi∈{−1,1}为样本标签,C为惩罚系数由自己设定。上述问题是要求解N个参数(α1,α2,α3,...,αN),其他参数均为已知,有多种算法可以对上述问题求解,但是算法复杂度均很大。但1998年,由Platt提出的序列最小最优化算法(SMO)可以高效的求解上述SVM问题,它把原始求解N个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解2个参数,方法类似于坐标上升,节省时间成本和降低了内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。

2.SMO原理分析

2.1视为一个二元函数

为了求解N个参数(α1,α2,α3,...,αN),首先想到的是坐标上升的思路,例如求解α1,可以固定其他N-1个参数,可以看成关于α1的一元函数求解,但是注意到上述问题的等式约束条件∑Ni=1yiαi=0,当固定其他参数时,参数α1也被固定,因此此种方法不可用。 
SMO算法选择同时优化两个参数,固定其他N-2个参数,假设选择的变量为α1,α2,固定其他参数α3,α4,...,αN,由于参数α3,α4,...,αN的固定,可以简化目标函数为只关于α1,α2的二元函数,Constant表示常数项(不包含变量α1,α2的项)。

min Ψ(α1,α2)=12K11α21+12K22α22+y1y2K12α1α2−(α1+α2)+y1v1α1+y2v2α2+Constant(1)

其中vi=∑Nj=3αjyjK(xi,xj),i=1,2

2.2视为一元函数

由等式约束得:α1y1+α2y2=−∑Ni=3αiyi=ζ,可见ζ为定值。 
等式α1y1+α2y2=ζ两边同时乘以y1,且y21=1,得

α1=(ζ−y2α2)y1(2)

(2)式带回到(1)中得到只关于参数α2的一元函数,由于常数项不影响目标函数的解,以下省略掉常数项Constant

min Ψ(α2)=12K11(ζ−α2y2)2+12K22α22+y2K12(ζ−α2y2)α2−(ζ−α2y2)y1−α2+v1(ζ−α2y2)+y2v2α2(3)

2.3对一元函数求极值点

上式中是关于变量α2的函数,对上式求导并令其为0得: 
∂Ψ(α2)∂α2=(K11+K22−2K12)α2−K11ζy2+K12ζy2+y1y2−1−v1y2+v2y2=0

把(4)(6)(7)带入下式中: 
(K11+K22−2K12)α2−K11ζy2+K12ζy2+y1y2−1−v1y2+v2y2=0 
化简得: 此时求解出的αnew2未考虑约束问题,先记为αnew,unclipped2: 
(K11+K22−2K12)αnew,unclipped2=(K11+K22−2K12)αold2+y2[y2−y1+f(x1)−f(x2)] 
带入(5)式,并记η=K11+K22−2K12得:

αnew,unclipped2=αold2+y2(E1−E2)η(8)

2.4对原始解修剪

上述求出的解未考虑到约束条件:

  • 0≤αi=1,2≤C
  • α1y1+α2y2=ζ

在二维平面上直观表达上述两个约束条件 
【机器学习详解】SMO算法剖析(转载)-LMLPHP 
最优解必须要在方框内且在直线上取得,因此L≤αnew2≤H; 
当y1≠y2时,L=max(0,αold2−αold1);H=min(C,C+αold2−αold1) 
当y1=y2时,L=max(0,αold1+αold2−C);H=min(C,αold2+αold1) 
经过上述约束的修剪,最优解就可以记为αnew2了。

αnew2=⎧⎩⎨⎪⎪⎪⎪ H ,αnew,unclipped2>Hαnew,unclipped2,L⩽αnew,unclipped2⩽H L ,αnew,unclipped2<L

2.5求解αnew1

由于其他N-2个变量固定,因此αold1y1+αold2y2=αnew1y1+αnew2y2所以可求得

αnew1=αold1+y1y2(αold2−αnew2)(9)

2.6取临界情况

大部分情况下,有η=K11+K22−2K12>0。但是在如下几种情况下,αnew2需要取临界值L或者H.

  1. η<0,当核函数K不满足Mercer定理时,矩阵K非正定;
  2. η=0,样本x1与x2输入特征相同;

也可以如下理解,对(3)式求二阶导数就是η=K11+K22−2K12, 
当η<0时,目标函数为凸函数,没有极小值,极值在定义域边界处取得。 
当η=0时,目标函数为单调函数,同样在边界处取极值。 
计算方法: 
即当αnew2=L和αnew2=H分别带入(9)式中,计算出αnew1=L1和αnew1=H1,其中s=y1y2 
【机器学习详解】SMO算法剖析(转载)-LMLPHP

带入目标函数(1)内,比较Ψ(α1=L1,α2=L)与Ψ(α1=H1,α2=H)的大小,α2取较小的函数值对应的边界点。 
【机器学习详解】SMO算法剖析(转载)-LMLPHP 
其中 
【机器学习详解】SMO算法剖析(转载)-LMLPHP

3.启发式选择变量

上述分析是在从N个变量中已经选出两个变量进行优化的方法,下面分析如何高效地选择两个变量进行优化,使得目标函数下降的最快。

第一个变量的选择

第一个变量的选择称为外循环,首先遍历整个样本集,选择违反KKT条件的αi作为第一个变量,接着依据相关规则选择第二个变量(见下面分析),对这两个变量采用上述方法进行优化。当遍历完整个样本集后,遍历非边界样本集(0<αi<C)中违反KKT的αi作为第一个变量,同样依据相关规则选择第二个变量,对此两个变量进行优化。当遍历完非边界样本集后,再次回到遍历整个样本集中寻找,即在整个样本集与非边界样本集上来回切换,寻找违反KKT条件的αi作为第一个变量。直到遍历整个样本集后,没有违反KKT条件αi,然后退出。 
边界上的样本对应的αi=0或者αi=C,在优化过程中很难变化,然而非边界样本0<αi<C会随着对其他变量的优化会有大的变化。 
【机器学习详解】SMO算法剖析(转载)-LMLPHP

第二个变量的选择

SMO称第二个变量的选择过程为内循环,假设在外循环中找个第一个变量记为α1,第二个变量的选择希望能使α2有较大的变化,由于α2是依赖于|E1−E2|,当E1为正时,那么选择最小的Ei作为E2,如果E1为负,选择最大Ei作为E2,通常为每个样本的Ei保存在一个列表中,选择最大的|E1−E2|来近似最大化步长。 
有时按照上述的启发式选择第二个变量,不能够使得函数值有足够的下降,这时按下述步骤:

4.阈值b的计算

每完成对两个变量的优化后,要对b的值进行更新,因为b的值关系到f(x)的计算,即关系到下次优化时Ei的计算。 
1.如果0<αnew1<C,由KKT条件y1(wTx1+b)=1,得到∑Ni=1αiyiKi1+b=y1,由此得:

bnew1=y1−∑i=3NαiyiKi1−αnew1y1K11−αnew2y2K21

由(5)式得,上式前两项可以替换为:

y1−∑i=3NαiyiKi1=−E1+αold1y1K11+αold2y2K11+bold

得出:

bnew1=−E1−y1K11(αnew1−αold1)−y2K21(αnew2−αold2)+bold

2.如果0<αnew2<C,则

bnew2=−E2−y1K12(αnew1−αold1)−y2K22(αnew2−αold2)+bold

3.如果同时满足0<αnewi<C,则bnew1=bnew2 
4.如果同时不满足0<αnewi<C,则bnew1与bnew2以及它们之间的数都满足KKT阈值条件,这时选择它们的中点。(关于这个我不理解…)

建议参看SMO原文的伪代码

参考: 
统计学习方法,李航 
Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines,John C. Platt 
http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html

05-08 08:25