【机器学习详解】SMO算法剖析
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754
本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的。推荐参看SMO原文中的伪代码。
1.SMO概念
上一篇博客已经详细介绍了SVM原理,为了方便求解,把原始最优化问题转化成了其对偶问题,因为对偶问题是一个凸二次规划问题,这样的凸二次规划问题具有全局最优解,如下:
其中(xi,yi)表示训练样本数据,xi为样本特征,yi∈{−1,1}为样本标签,C为惩罚系数由自己设定。上述问题是要求解N个参数(α1,α2,α3,...,αN),其他参数均为已知,有多种算法可以对上述问题求解,但是算法复杂度均很大。但1998年,由Platt提出的序列最小最优化算法(SMO)可以高效的求解上述SVM问题,它把原始求解N个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解2个参数,方法类似于坐标上升,节省时间成本和降低了内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。
2.SMO原理分析
2.1视为一个二元函数
为了求解N个参数(α1,α2,α3,...,αN),首先想到的是坐标上升的思路,例如求解α1,可以固定其他N-1个参数,可以看成关于α1的一元函数求解,但是注意到上述问题的等式约束条件∑Ni=1yiαi=0,当固定其他参数时,参数α1也被固定,因此此种方法不可用。
SMO算法选择同时优化两个参数,固定其他N-2个参数,假设选择的变量为α1,α2,固定其他参数α3,α4,...,αN,由于参数α3,α4,...,αN的固定,可以简化目标函数为只关于α1,α2的二元函数,Constant表示常数项(不包含变量α1,α2的项)。
其中vi=∑Nj=3αjyjK(xi,xj),i=1,2
2.2视为一元函数
由等式约束得:α1y1+α2y2=−∑Ni=3αiyi=ζ,可见ζ为定值。
等式α1y1+α2y2=ζ两边同时乘以y1,且y21=1,得
(2)式带回到(1)中得到只关于参数α2的一元函数,由于常数项不影响目标函数的解,以下省略掉常数项Constant
2.3对一元函数求极值点
上式中是关于变量α2的函数,对上式求导并令其为0得:
∂Ψ(α2)∂α2=(K11+K22−2K12)α2−K11ζy2+K12ζy2+y1y2−1−v1y2+v2y2=0
把(4)(6)(7)带入下式中:
(K11+K22−2K12)α2−K11ζy2+K12ζy2+y1y2−1−v1y2+v2y2=0
化简得: 此时求解出的αnew2未考虑约束问题,先记为αnew,unclipped2:
(K11+K22−2K12)αnew,unclipped2=(K11+K22−2K12)αold2+y2[y2−y1+f(x1)−f(x2)]
带入(5)式,并记η=K11+K22−2K12得:
2.4对原始解修剪
上述求出的解未考虑到约束条件:
- 0≤αi=1,2≤C
- α1y1+α2y2=ζ
在二维平面上直观表达上述两个约束条件
最优解必须要在方框内且在直线上取得,因此L≤αnew2≤H;
当y1≠y2时,L=max(0,αold2−αold1);H=min(C,C+αold2−αold1)
当y1=y2时,L=max(0,αold1+αold2−C);H=min(C,αold2+αold1)
经过上述约束的修剪,最优解就可以记为αnew2了。
2.5求解αnew1
由于其他N-2个变量固定,因此αold1y1+αold2y2=αnew1y1+αnew2y2所以可求得
2.6取临界情况
大部分情况下,有η=K11+K22−2K12>0。但是在如下几种情况下,αnew2需要取临界值L或者H.
- η<0,当核函数K不满足Mercer定理时,矩阵K非正定;
- η=0,样本x1与x2输入特征相同;
也可以如下理解,对(3)式求二阶导数就是η=K11+K22−2K12,
当η<0时,目标函数为凸函数,没有极小值,极值在定义域边界处取得。
当η=0时,目标函数为单调函数,同样在边界处取极值。
计算方法:
即当αnew2=L和αnew2=H分别带入(9)式中,计算出αnew1=L1和αnew1=H1,其中s=y1y2
带入目标函数(1)内,比较Ψ(α1=L1,α2=L)与Ψ(α1=H1,α2=H)的大小,α2取较小的函数值对应的边界点。
其中
3.启发式选择变量
上述分析是在从N个变量中已经选出两个变量进行优化的方法,下面分析如何高效地选择两个变量进行优化,使得目标函数下降的最快。
第一个变量的选择
第一个变量的选择称为外循环,首先遍历整个样本集,选择违反KKT条件的αi作为第一个变量,接着依据相关规则选择第二个变量(见下面分析),对这两个变量采用上述方法进行优化。当遍历完整个样本集后,遍历非边界样本集(0<αi<C)中违反KKT的αi作为第一个变量,同样依据相关规则选择第二个变量,对此两个变量进行优化。当遍历完非边界样本集后,再次回到遍历整个样本集中寻找,即在整个样本集与非边界样本集上来回切换,寻找违反KKT条件的αi作为第一个变量。直到遍历整个样本集后,没有违反KKT条件αi,然后退出。
边界上的样本对应的αi=0或者αi=C,在优化过程中很难变化,然而非边界样本0<αi<C会随着对其他变量的优化会有大的变化。
第二个变量的选择
SMO称第二个变量的选择过程为内循环,假设在外循环中找个第一个变量记为α1,第二个变量的选择希望能使α2有较大的变化,由于α2是依赖于|E1−E2|,当E1为正时,那么选择最小的Ei作为E2,如果E1为负,选择最大Ei作为E2,通常为每个样本的Ei保存在一个列表中,选择最大的|E1−E2|来近似最大化步长。
有时按照上述的启发式选择第二个变量,不能够使得函数值有足够的下降,这时按下述步骤:
4.阈值b的计算
每完成对两个变量的优化后,要对b的值进行更新,因为b的值关系到f(x)的计算,即关系到下次优化时Ei的计算。
1.如果0<αnew1<C,由KKT条件y1(wTx1+b)=1,得到∑Ni=1αiyiKi1+b=y1,由此得:
由(5)式得,上式前两项可以替换为:
得出:
2.如果0<αnew2<C,则
3.如果同时满足0<αnewi<C,则bnew1=bnew2
4.如果同时不满足0<αnewi<C,则bnew1与bnew2以及它们之间的数都满足KKT阈值条件,这时选择它们的中点。(关于这个我不理解…)
建议参看SMO原文的伪代码
参考:
统计学习方法,李航
Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines,John C. Platt
http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html