【题目链接】:http://poj.org/problem?id=3714

【题意】



给你两类的点;

各n个;

然后让你求出2*n个点中的最近点对的距离;

这里的距离定义为不同类型的点之间的距离;

【题解】



分治法;

不断划分小区间;

求出小区间内的最小值;

为后面的大区间剪枝;

只是要求点的类型不同才能剪枝了;



【Number Of WA】



0



【完整代码】

#include <iostream>
#include <cstdio>
#include <iomanip>
#include <algorithm>
#include <cmath>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 2e5+100;
const LL oo = 5e18; struct node{
LL x,y;
int p;
}; int n;
node a[N],b[N]; bool cmp1(node a,node b){
return a.x < b.x;
} bool cmp2(node a,node b){
return a.y < b.y;
} LL sqr(LL x){
return x*x;
} LL dis(node a,node b){
LL temp = 0;
temp+=sqr(a.x-b.x);
temp+=sqr(a.y-b.y);
return temp;
} LL solve(int l,int r){
LL ret = oo;
if (l>=r) return ret;
if (l+1==r) {
if (a[l].p!=a[r].p)
return dis(a[l],a[r]);
else
return ret;
}
int m = (l+r)>>1;
LL ret1 = solve(l,m),ret2 = solve(m+1,r),temp;
ret = min(ret1,ret2);
int k = 0;
rep2(i,m,l){
temp =sqr(a[m].x-a[i].x);
if (temp>ret && a[m].p != a[i].p) break;
b[++k] = a[i];
}
rep1(i,m+1,r){
temp = sqr(a[m].x-a[i].x);
if (temp>ret && a[m].p != a[i].p) break;
b[++k] = a[i];
}
sort(b+1,b+1+k,cmp2);
rep1(i,1,k){
rep1(j,i+1,k){
if (b[i].p==b[j].p) continue;
temp = sqr(b[i].y-b[j].y);
if (temp > ret) break;
temp = dis(b[i],b[j]);
if (temp < ret) ret = temp;
}
}
return ret;
} int main(){
//Open();
Close();
int T;
cin >> T;
while (T--){
cin >> n;
rep1(i,1,n){
cin >> a[i].x >> a[i].y;
a[i].p = 0;
}
rep1(i,n+1,2*n){
cin >> a[i].x >> a[i].y;
a[i].p = 1;
}
n<<=1;
sort(a+1,a+1+n,cmp1);
cout << fixed << setprecision(3) << double (sqrt(1.0*solve(1,n))) << endl;
}
return 0;
}
05-11 22:38