题意:  给定n个人,存在上下级关系,每个人只有一个上级,求最大独立集。并判断最大独立集是否唯一

思路:d[i][0]表示以i为根的子树中,不选择第i个节点的最大独立集,f[i][0]表示以i为根的子树中,不选择第i个节点的方案是否唯一。同理,d[i][1]和f[i][1]就是选择第i个节点的情况。

  状态转移:d[i][0] =

∑max(d[v][0], d[v][1]), d[i][1] =
∑d[v][0];

  唯一性的转移方程见代码:

if(k == 1) { //选择节点u
			d[u][k] += dfs(v, 0); //不选择子节点
			if(!f[v][0]) f[u][k] = 0;
		}
		else {
			d[u][k] += max(dfs(v, 1), dfs(v, 0));
			if(d[v][0] == d[v][1]) f[u][k] = 0;
			else if(d[v][0] > d[v][1] && !f[v][0]) f[u][k] = 0;
			else if(d[v][1] > d[v][0] && !f[v][1]) f[u][k] = 0;
		}



AC代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<utility>
#include<string>
#include<iostream>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define eps 1e-10
#define inf 0x3f3f3f3f
#define PI pair<int, int>
const int maxn = 200 + 5;
map<string, int>name;
vector<int>son[maxn];
int cnt, d[maxn][2], f[maxn][2];

int getID(string &p) {
	if(!name.count(p)) name[p] = cnt++;
	return name[p];
}

int dfs(int u, int k) {
	f[u][k] = 1;
	d[u][k] = k;
	int n = son[u].size();
	for(int i = 0; i < n; ++i) {
		int v = son[u][i];
		if(k == 1) { //选择节点u
			d[u][k] += dfs(v, 0); //不选择子节点
			if(!f[v][0]) f[u][k] = 0;
		}
		else {
			d[u][k] += max(dfs(v, 1), dfs(v, 0));
			if(d[v][0] == d[v][1]) f[u][k] = 0;
			else if(d[v][0] > d[v][1] && !f[v][0]) f[u][k] = 0;
			else if(d[v][1] > d[v][0] && !f[v][1]) f[u][k] = 0;
		}
	}
	return d[u][k];
}

int main() {
	int n, root;
	string boss, kid;
	while(scanf("%d", &n) == 1 && n) {
		for(int i = 0; i < n; ++i) son[i].clear();
		name.clear();
		cnt = 0;
		cin >> boss;
		getID(boss);
		for(int i = 1; i < n; ++i) {
			cin >> kid >> boss;
			int par = getID(boss), kids = getID(kid);
			son[par].push_back(kids);
		}
		int ans = max(dfs(0, 0), dfs(0, 1));
		printf("%d ", ans);
		int only = 1;
		if(d[0][0] == d[0][1]) only = 0;
		else if(d[0][0] > d[0][1] && !f[0][0]) only = 0;
		else if(d[0][1] > d[0][0] && !f[0][1]) only = 0;
		if(only) printf("Yes\n");
		else printf("No\n");
	}

	return 0;
}

如有不当之处欢迎指出!

05-02 23:27