输入整数a,b (0<a<b<500) ,输出最佳表达式 使得加数个数尽量小,如果加数个数相同,则最小的分数越大越好 ,输出表达式
考虑从小到大枚举深度上限maxd,每次执行只考虑深度不超过maxd的结点。当前的结点n的深度为g(n),乐观估价函数为h(n),则当
g(n)+h(n)>maxd时应该剪枝,这就是IDA*算法。
#include<iostream>
#include<string>
#include<cmath>
#include<cstring>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<sstream>
#include<cstdio>
#define INF 0x3f3f3f3f
//const int maxn = 1e6 + 5;
const double PI = acos(-1.0);
typedef long long ll;
using namespace std; int a, b, maxd; ll gcd(ll a, ll b) {
return b == ? a : gcd(b, a % b);
} inline int get_first(ll a, ll b) {
return b / a + ;
} const int maxn = + ; ll v[maxn], ans[maxn]; bool better(int d) {
for (int i = d; i >= ; i--) if (v[i] != ans[i]) {
return ans[i] == - || v[i] < ans[i];
}
return false;
} bool dfs(int d, int from, ll aa, ll bb) {
if (d == maxd) {
if (bb % aa) return false;
v[d] = bb / aa;
if (better(d)) memcpy(ans, v, sizeof(ll) * (d + ));
return true;
}
bool ok = false;
from = max(from, get_first(aa, bb));
for (int i = from;; i++) {
if (bb * (maxd + - d) <= i * aa) break;
v[d] = i;
ll b2 = bb * i;
ll a2 = aa * i - bb;
ll g = gcd(a2, b2);
if (dfs(d + , i + , a2 / g, b2 / g)) ok = true;
}
return ok;
} int main() {
int kase = ;
while (scanf("%d%d", &a, &b) != EOF) {
int ok = ;
for (maxd = ; maxd <= ; maxd++) {
memset(ans, -, sizeof ans);
if (dfs(, get_first(a, b), a, b)) {
ok = ;
break;
}
}
printf("Case %d: ", ++kase);
if (ok) {
printf("%d/%d=",a,b);
for (int i = ; i < maxd; i++) printf("1/%lld+", ans[i]);
printf("1/%lld\n", ans[maxd]);
}
else printf("No solution\n");
}
return ;
}