1016: [JSOI2008]最小生成树计数
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 6200 Solved: 2518
[Submit][Status][Discuss]
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
8
/*
* @Author: LyuC
* @Date: 2017-09-07 21:48:20
* @Last Modified by: LyuC
* @Last Modified time: 2017-09-12 17:52:51
*/
/*
题意:现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道
这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则
这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方
案数对31011的模就可以了。 思路:每个最小生成树的相同权值的边数是相同的,并且连通性是相同的,只需要枚举每个
权值的相同连通性,并且是最小生成树中这个权值的个数的方案数,然后组合一下就行了
*/
#include <bits/stdc++.h> #define MAXN 105
#define MAXM 1005
#define mod 31011 using namespace std; struct Edge{
int u,v,w;
bool operator < (const Edge & other) const{
return w<other.w;
}
}edge[MAXM];
vector<Edge>v[MAXM];
int n,m;
int x,y,z;
int bin[MAXN];
int root[MAXN];
int vis[MAXM];//每种权值用到的数量
int sum;
int la;
int pos;
int res; inline int findx(int x){
int s=x;
while(x!=bin[x])
x=bin[x];
bin[s]=x;
return x;
} inline int Count(int x){
int s=;
while(x){
if(x%)
s++;
x/=;
}
return s;
} inline void init(){
for(int i=;i<=n;i++){
bin[i]=i;
root[i]=i;
}
memset(vis,,sizeof vis);
for(int i=;i<MAXM;i++)
v[i].clear();
res=;
pos=;
sum=;
} int main(){
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
init();
for(int i=;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
edge[i].u=x;
edge[i].v=y;
edge[i].w=z;
}
sort(edge,edge+m);
//处理每种权值需要的边数
la=-;
for(int i=;i<m;i++){
if(edge[i].w!=la){
la=edge[i].w;
bool flag=false;
for(int j=i;edge[j].w==la;j++){
int fx=findx(edge[j].u);
int fy=findx(edge[j].v);
if(fx!=fy){
flag=true;
bin[fx]=fy;
vis[pos]++;
sum++;
}
v[pos].push_back(edge[j]);
}
pos++;
}
}
if(sum!=n-){
puts("");
return ;
}
for(int i=;i<pos;i++){//枚举每个阶段用到权值的边
if(vis[i]==) continue;
int tol=(<<v[i].size());
int cur=;//可以的方案
for(int j=;j<tol;j++){
if(Count(j)!=vis[i]) continue;
bool flag=true;
memcpy(bin,root,sizeof root);
for(int k=;k<v[i].size();k++){
if((j&(<<k))!=){//如果这条边存在
int fx=findx(v[i][k].u);
int fy=findx(v[i][k].v);
if(fx==fy){
flag=false;
break;
}else{
bin[fx]=fy;
}
}
}
if(flag==true)
cur++;
}
res=res*cur%mod;
memcpy(bin,root,sizeof root);
for(int j=;j<v[i].size();j++){
int fx=findx(v[i][j].u);
int fy=findx(v[i][j].v);
if(fx!=fy){
bin[fx]=fy;
}
}
memcpy(root,bin,sizeof bin);
}
printf("%d\n",res%mod);
return ;
}