题目背景

盛况空前的足球赛即将举行。球赛门票售票处排起了球迷购票长龙。

按售票处规定,每位购票者限购一张门票,且每张票售价为50元。在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值100元的钱币。假设售票处在开始售票时没有零钱。试问这2N个球迷有多少种排队方式可使售票处不致出现找不出钱的尴尬局面。

题目描述

例如当n=2是,用A表示手持50元面值的球迷,用B表示手持100元钱的球迷。则最多可以得到以下两组不同的排队方式,使售票员不至于找不出钱。

第一种:A A B B

第二种:A B A B

[编程任务]

对于给定的n (0≤n≤20),计算2N个球迷有多少种排队方式,可以使售票处不至于找不出钱。

输入输出格式

输入格式:

一个整数,代表N的值

输出格式:

一个整数,表示方案数

输入输出样例

输入样例#1: 

2
输出样例#1: 

2

说明

必开QWORD

测试:N=15

回溯:1秒(超时)

模拟栈:大于10分钟

递归算法:1秒(超时)

动态规划:0 MS

组合算法:16 MS

哇!卡特兰数欸、、

找了半天排列组合的规律没找出来,看了看题解结果发现是卡特兰数、、、

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 30
#define LL long long
using namespace std;
LL n,h[N];
LL read()
{
    LL x=,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    n=read();
    h[]=h[]=;
    ;i<=n;i++)
     ;j<=i;j++)
      h[i]=h[i]+h[j-]*h[i-j];
    printf("%lld",h[n]);
    ;
}
05-11 20:07