poj1386有向图判断是否存在欧拉回路或者欧拉路-LMLPHP

 

有向图的图联通是指基图联通,也就是把有向图的边改成无向图然后看是否连通。判断联通可用dfs或者并查集。

题意就是给你n个由小写字母构成的字符串,问你能不能将这n个字符串连接起来,B能接在A后面的条件是A的最后一个字母==B的第一个字母。

然后就是将26个小写字母看成顶点集,对于一个字符串,其首字母向尾字母连一条单向边构图。

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int in[N],out[N],ans;
char s[N*];
vector<int>G[N];
bool vis[N];
void dfs(int u)
{
for(int i=; i<(int)G[u].size(); ++i)
{
if(vis[G[u][i]])
{
++ans;
vis[G[u][i]]=;
dfs(G[u][i]);
}
}
}
int main()
{
int T,n;
for(scanf("%d",&T); T--;)
{
scanf("%d",&n);
memset(vis,,sizeof(vis));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
for(int i=; i<; ++i) G[i].clear();
int cont=ans=;
while(n--)
{
scanf("%s",s);
int st=s[],ed=s[strlen(s)-];
st-='a',ed-='a';
G[st].push_back(ed);
G[ed].push_back(st);
++in[ed];
++out[st];
if(!vis[st]) ++cont;vis[st]=;
if(!vis[ed]) ++cont;vis[ed]=;
}
for(n=; n<; ++n) if(!G[n].empty()) break;
vis[n]=,++ans;
dfs(n);
if(ans!=cont)
{
puts("The door cannot be opened.");
continue;
}
bool ok=,k1=,k2=;
for(int i=; i<; ++i)
{
if(in[i]==out[i]) continue;
else if(in[i]-out[i]==&&!k1) k1=;
else if(out[i]-in[i]==&&!k2) k2=;
else
{
ok=;
break;
}
}
if(ok) puts("Ordering is possible.");
else puts("The door cannot be opened.");
}
}
05-11 23:01