学习整理,巩固学习,下列实现都是通过CAS实现的

ReentrantLock:
/**
 * reentrantlock用于替代synchronized
 * 由于m1锁定this,只有m1执行完毕的时候,m2才能执行
 * 这里是复习synchronized最原始的语义
 * 
 * 使用reentrantlock可以完成同样的功能
 * 需要注意的是,必须要必须要必须要手动释放锁(重要的事情说三遍)
 * 使用syn锁定的话如果遇到异常,jvm会自动释放锁,但是lock必须手动释放锁,因此经常在finally中进行锁的释放
 * 
 * 使用reentrantlock可以进行“尝试锁定”tryLock,这样无法锁定,或者在指定时间内无法锁定,线程可以决定是否继续等待
 * 
 * 使用ReentrantLock还可以调用lockInterruptibly方法,可以对线程interrupt方法做出响应,
 * 在一个线程等待锁的过程中,可以被打断
 * 
 * ReentrantLock还可以指定为公平锁
 * 
 * @author mashibing
 */
package com.mashibing.juc.c_020;

import java.util.concurrent.locks.ReentrantLock;

public class T05_ReentrantLock5 extends Thread {
        
    private static ReentrantLock lock=new ReentrantLock(true); //参数为true表示为公平锁,请对比输出结果
    public void run() {
        for(int i=0; i<100; i++) {
            lock.lock();
            try{
                System.out.println(Thread.currentThread().getName()+"获得锁");
            }finally{
                lock.unlock();
            }
        }
    }
    public static void main(String[] args) {
        T05_ReentrantLock5 rl=new T05_ReentrantLock5();
        Thread th1=new Thread(rl);
        Thread th2=new Thread(rl);
        th1.start();
        th2.start();
    }
}

CountDownLatch:
倒计时锁,门闩
根据线程数量创建门闩数量,每一个线程执行完成后countDown,线程数减1,该操作是原子操作,使用CAS实现,latch.await()处于阻塞状态,
当countDown=0的时候,线程全部执行完成

public class T06_TestCountDownLatch {
    public static void main(String[] args) {
        usingJoin();
        usingCountDownLatch();
    }

    private static void usingCountDownLatch() {
        Thread[] threads = new Thread[100];
        CountDownLatch latch = new CountDownLatch(threads.length);

        for(int i=0; i<threads.length; i++) {
            threads[i] = new Thread(()->{
                int result = 0;
                for(int j=0; j<10000; j++) result += j;
                latch.countDown();
            });
        }

        for (int i = 0; i < threads.length; i++) {
            threads[i].start();
        }

        try {
            latch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        System.out.println("end latch");
    }

    private static void usingJoin() {
        Thread[] threads = new Thread[100];

        for(int i=0; i<threads.length; i++) {
            threads[i] = new Thread(()->{
                int result = 0;
                for(int j=0; j<10000; j++) result += j;
            });
        }

        for (int i = 0; i < threads.length; i++) {
            threads[i].start();
        }

        for (int i = 0; i < threads.length; i++) {
            try {
                threads[i].join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        System.out.println("end join");
    }
}

CyclicBarrier:
栅栏
初始化时设置阻塞线程数,阻塞方法cyc.await()方法,当线程数量满足初始值的时候,执行操作打印System.out.println("人满 发车")然后执行System.out.println(Thread.currentThread().getId())
public class CyclicBarrierThread {

    public static void main(String[] args) {
        CyclicBarrier cyc = new CyclicBarrier(20,() -> System.out.println("人满 发车"));

        for(int i = 0;i < 20;i++){
            new Thread(()->{
                try {
                    cyc.await();
                    System.out.println(Thread.currentThread().getId());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }).start();
        }
    }
}

ReentrantReadWriteLock:
读写锁
读锁,也叫共享锁,new ReentrantReadWriteLock().readLock()
写锁,也叫排它锁,new ReentrantReadWriteLock().writeLock()
public class T10_TestReadWriteLock {
    static Lock lock = new ReentrantLock();
    private static int value;

    static ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
    static Lock readLock = readWriteLock.readLock();
    static Lock writeLock = readWriteLock.writeLock();

    public static void read(Lock lock) {
        try {
            lock.lock();
            Thread.sleep(1000);
            System.out.println("read over!");
            //模拟读取操作
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void write(Lock lock, int v) {
        try {
            lock.lock();
            Thread.sleep(1000);
            value = v;
            System.out.println("write over!");
            //模拟写操作
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }


    public static void main(String[] args) {
        
        Runnable readR = ()-> read(readLock);

        Runnable writeR = ()->write(writeLock, new Random().nextInt());

        for(int i=0; i<18; i++) new Thread(readR).start();
        for(int i=0; i<2; i++) new Thread(writeR).start();
    }
}

Semaphore:
信号量
当初始化Semaphore时,设置可并行执行的线程数,与是否为公平锁,true公平,false非公平,当设置为1时,当前只允许一个线程执行
public class T11_TestSemaphore {
    public static void main(String[] args) {
        //Semaphore s = new Semaphore(2);
        Semaphore s = new Semaphore(2, true);
        //允许一个线程同时执行
        //Semaphore s = new Semaphore(1);

        new Thread(()->{
            try {
                s.acquire();

                System.out.println("T1 running...");
                Thread.sleep(200);
                System.out.println("T1 running...");

            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                s.release();
            }
        }).start();

        new Thread(()->{
            try {
                s.acquire();

                System.out.println("T2 running...");
                Thread.sleep(200);
                System.out.println("T2 running...");

                s.release();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }).start();
    }
}

Exchanger:
线程间的通信,只能两个线程间进行数据交换,exchanger.exchange(s)为阻塞状态
public class T12_TestExchanger {

    static Exchanger<String> exchanger = new Exchanger<>();

    public static void main(String[] args) {
        new Thread(()->{
            String s = "T1";
            try {
                s = exchanger.exchange(s);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + " " + s);

        }, "t1").start();


        new Thread(()->{
            String s = "T2";
            try {
                s = exchanger.exchange(s);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + " " + s);

        }, "t2").start();
    }
}


 

09-01 03:24