内存管理

内存管理的发展历程

DOS时代 - 同一时间只能有一个进程在运行(也有一些特殊算法可以支持多进程)

windows9x - 多个进程装入内存 1:内存不够用 2:互相打扰

为了解决这两个问题,诞生了现在的内存管理系统:虚拟地址 分页装入 软硬件结合寻址

程序在磁盘存储的时候,已经按块存储了,每块4k用于加载到内存页中,并产生页表,在页表中记录每块的功能,比如执行程序在第二块,那么在执行程序的时候,会把第二块加载到内存中用于执行,当执行完以后发现要用第三块,在把第三块加载到内存页中;

计算机基础知识03-LMLPHP

  1. 分页(内存不够用),内存中分成固定大小的页框(4K),把程序(硬盘上)分成4K大小的块,用到哪一块,加载那一块,加载的过程中,如果内存已经满了,会把最不常用的一块放到swap分区, 把最新的一块加载进来,这个就是著名的LRU算法

    1. LRU算法 LeetCode146题,头条要求手撕,阿里去年也要求手撕
    2. Least Recently Used 最不常用
    3. 哈希表(保证 查找操作O(1)) + 链表 (保证 排序操作和新增操作 O(1)))
    4. 双向链表 (保证 左边指针 指向右边块)
  2. 虚拟内存(解决相互打扰问题)

    1. DOS Win31 ... 互相干掉
    2. 为了保证互不影响 - 让进程工作在虚拟空间,程序中用到的空间地址不再是直接的物理地址,而是虚拟的地址,这样,A进程永远不可能访问到B进程的空间
    3. 虚拟空间多大呢?寻址空间 - 64位系统 2 ^ 64,比物理空间大很多 ,单位是byte
    4. 站在虚拟的角度,进程是独享整个系统 + CPU
    5. 内存映射:偏移量 + 段的基地址 = 线性地址 (虚拟空间)
    6. 线性地址通过 OS + MMU(硬件 Memory Management Unit)计算机基础知识03-LMLPHP
  3. 缺页中断(不是很重要):

    1. 需要用到页面内存中没有,产生缺页异常(中断),由内核处理并加载

ZGC

算法叫做:Colored Pointer

GC信息记录在指针上,不是记录在头部, immediate memory use

42位指针 寻址空间4T JDK13 -> 16T 目前为止最大16T 2^44

CPU如何区分一个立即数 和 一条指令

总线内部分为:数据总线 地址总线 控制总线

地址总线目前:48位

颜色指针本质上包含了地址映射的概念

内核同步机制

关于同步理论的一些基本概念

•临界区(critical area): 访问或操作共享数据的代码段 简单理解:synchronized大括号中部分(原子性)

•竞争条件(race conditions)两个线程同时拥有临界区的执行权

•数据不一致:data unconsistency 由竞争条件引起的数据破坏

•同步(synchronization)避免race conditions

•锁:完成同步的手段(门锁,门后是临界区,只允许一个线程存在) 上锁解锁必须具备原子性

•原子性(象原子一样不可分割的操作)

•有序性(禁止指令重排)

•可见性(一个线程内的修改,另一个线程可见)

互斥锁 排他锁 共享锁 分段锁

内核同步常用方法

1.原子操作 – 内核中类似于AtomicXXX,位于<linux/types.h>

2.自旋锁 – 内核中通过汇编支持的cas,位于<asm/spinlock.h>

3.读-写自旋 – 类似于ReadWriteLock,可同时读,只能一个写 读的时候是共享锁,写的时候是排他锁

4.信号量 – 类似于Semaphore(PV操作 down up操作 占有和释放) 重量级锁,线程会进入wait,适合长时间持有的锁情况

5.读-写信号量 – downread upread downwrite upwrite (多个写,可以分段写,比较少用)(分段锁)

6.互斥体(mutex) – 特殊的信号量(二值信号量)

7.完成变量 – 特殊的信号量(A发出信号给B,B等待在完成变量上) vfork() 在子进程结束时通过完成变量叫醒父进程 类似于(Latch)

8.BKL:大内核锁(早期,现在已经不用)

9.顺序锁(2.6): – 线程可以挂起的读写自旋锁 序列计数器(从0开始,写时增加(+1),写完释放(+1),读前发现单数, 说明有写线程,等待,读前读后序列一样,说明没有写线程打断)

10.禁止抢占 – preempt_disable()

11.内存屏障 – 见volatile

09-01 03:22