同T2一样外校蒟蒻可能没看过:

题目描述:

题目背景

@桶哥

桶哥的桶没有送完。

题目描述

桶哥的桶没有送完,他还有n个桶。他决定把这些桶吃掉。他的每一个桶两个属性:种类aia_iai​和美味值bib_ibi​。若下标为x, y, z(下标从1开始)的三个桶满足:

x<z x < z x<z 且 x+y=z−2y x + y = z - 2y x+y=z−2y 且 ax=az a_x = a_z ax​=az​

那么它们构成一个套餐,会产生

(x+z)∗(bx−bz) (x + z) * (b_x - b_z) (x+z)∗(bx​−bz​)

的价值。问:一共会产生多少价值?

上面那个看不清楚的下标是z

输入输出格式

输入格式:

第一行两个整数n,mn,mn,m,表示共有m种共n个桶。

第二行n个整数表示bib_ibi​,

第三行n个整数表示aia_iai​,(下标)

输出格式:

一行一个整数,表示一共会产生多少价值。由于这个数可能很大,你只需要输出它除以10007的余数。

如果答案是负的,请将其加上10007再对10007取余。如-1应输出10006.


正解开始:

然而_rqy大佬讲的我并没怎么听懂,所以也是一蒙一蒙的。

转换一下公式:

x+y=z-2y
z-x=3y
x,z种类相等

那么把求价值公式:

校内题目T2695 桶哥的问题——吃桶-LMLPHP

展开得:xbx+zbx-xbz-zbz(注意下标),

也就是说,这个东西和y半毛钱关系都没有!

理一下关系:

1,z>x

2.z-x为3的倍数

3.z和x为同一种类的桶

那么考虑思路:同余枚举

一个数%3无非是余1余2余3(余0)

那么从1,2,3开始,按下标网上枚举,分3种,分别对应3个不同外循环,而内循环就是网上枚举到最后一个下标,那么别看是双重循环,但是你把枚举次数加起来,是O(n)的。

直接快了好多QWQ

那么回归正题:

内层循环干什么?

当然是利用∑来求和了

安利核心公式:

(x+z)*(b-b)=∑x*b+z*∑b-b*∑x-z*b*∑1

为什么∑的地方不同呢???

因为我们要对z枚举(或者x也行),这样把上一层求和的就给保存下来继续用而不是再for循环求一遍

其实用双层循环而不是三重循环来求阶乘也是一个道理

因为z<x,也就是说对于每一个z,前面从0到z-3的x都满足,都要被加进∑内部

每次只加一个而不是又来一遍for循环。。。

这个比较清楚了吧。。。。。。

上代码了。。。QWQ

#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstring> int readInt() {//快读
int ans = , c, f = ;
while (!isdigit(c = getchar()))
if (c == '-') f *= -;
do ans = ans * + c - '';
while (isdigit(c = getchar()));
return ans * f;
} const int mod = ;//定义%数组 int b[], a[];
int S[], Sx[], Sbx[], Sxbx[];//s为∑ int main() {
int n = readInt(); /* m = */readInt();
for(int i = ; i <= n; i++) b[i] = readInt() % mod;
for(int i = ; i <= n; i++) a[i] = readInt();
int ans = ;
for (int cc = ; cc <= ; ++cc) {
// { cc, cc+3, cc+6 ... } 分一组
memset(S, , sizeof(S));
memset(Sx, , sizeof(Sx));
memset(Sbx, , sizeof(Sbx));
memset(Sxbx, , sizeof(Sxbx));
for(int i = cc; i <= n; i += ) {
ans = (ans + i % mod * Sbx[a[i]] % mod) % mod;
ans = (ans - b[i] * Sx[a[i]] % mod) % mod;
ans = (ans + Sxbx[a[i]]) % mod;
ans = (ans - S[a[i]] * b[i] % mod * (i % mod) % mod) % mod;
S[a[i]] = (S[a[i]] + ) % mod;
Sx[a[i]] = (Sx[a[i]] + i) % mod;
Sbx[a[i]] = (Sbx[a[i]] + b[i]) % mod;
Sxbx[a[i]] = (Sxbx[a[i]] + i % mod * b[i] % mod) % mod;
}
}
printf("%d", (ans + mod) % mod);
return ;
}

气喘吁吁的甩胳膊,,

%_rqy大佬,是他出的题和给我们讲的题!

05-03 23:19