题目:http://codeforces.com/contest/757/problem/E
f0[n]=2^m,其中m是n的质因子个数(种类数)。大概是一种质因数只能放在 d 或 n/d 两者之一。
然后应该发现因为 f0 是积性的,所以 fr 也是积性的!因为是卷积得来的。
这样就能把每个质因数分开。对于每种质因数考虑 fr 的转移,则 f [ r ][ p^k ] = sigma(i:0~k) ( f [ r-1 ][ p^i ] ) 。
应该发现 f0 里每种质因数的值只和其次数有关,从转移可得出 f [ k ] 里的各种质因数的值也只和其次数有关!所以 dp 状态里只要记录次数就行。
学习到了质因数分解的更好而同样简单的方法。就是预处理mindiv,然后每次除以自己的mindiv。
先写了自己的原始方法,T了;于是怒写了个pollar rho,结果T得更快,难道是写错了?
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e6,M=,mod=1e9+;
int q,r,n,dp[N+][M+],s[M+],ans,mindiv[N+],cnt,pri[N+];
bool vis[N+];
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
void upd(int &x){x-=(x>=mod?mod:);}
void init()
{
mindiv[]=;//
for(int i=;i<=N;i++)
{
if(!vis[i])pri[++cnt]=i,mindiv[i]=i;
for(int j=;j<=cnt&&(ll)i*pri[j]<=N;j++)
{
int d=i*pri[j];
vis[d]=; mindiv[d]=pri[j];
if(i%pri[j]==)break;
}
}
}
int pw(int x,int k,int md)
{
int ret=;while(k){if(k&)ret=(ll)ret*x%md;x=(ll)x*x%md;k>>=;}return ret;
}
bool MR(int x)
{
if(x==)return true;
int s=,u=x-,t=;
while((u&)==)u>>=,t++;
while(s--)
{
int a=rand()%(x-)+;//2~x-1
a=pw(a,u,x);
for(int i=,d;i<=t;i++)
{
d=(ll)a*a%x;
if(d==&&a!=&&a!=x-)return false;
a=d;
}
if(a!=)return false;
}
return true;
}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int Pl_rho(int x,int c)
{
int x0=rand()%x,y=x,t=,k=;
while()
{
x0=((ll)x0*x0+c)%(x+);
int g=gcd(abs(x0-y),x);
if(g!=&&g!=x)return g;
if(x0==y)return x;
if(++k==t)t<<=,y=x0;
}
}
void fd_fc(int x)
{
if(x<)return;
if(MR(x))
{
int ret=;
while(n%x==)n/=x,ret++;
ans=(ll)ans*dp[r][ret]%mod;
return;
}
int p=x;
while(p==x)p=Pl_rho(p,rand()%(x-)+);//1~x-1
fd_fc(p); fd_fc(x/p);
}
int main()
{
dp[][]=;s[]=; init();
for(int i=;i<=M;i++)dp[][i]=,s[i]=s[i-]+;
for(int i=;i<=N;i++)
for(int j=;j<=M;j++)
dp[i][j]=s[j],s[j]=s[j-]+dp[i][j],upd(s[j]);
q=rdn();
while(q--)
{
r=rdn(); n=rdn(); ans=;
//fd_fc(n);
while(n!=)
{
int i=mindiv[n],d=;
while(n%i==)n/=i,d++;
ans=(ll)ans*dp[r][d]%mod;
}
/*
for(int i=mindiv[n],d;(ll)i*i<=n;i++)
if(n%i==0)
{
d=0;
while(n%i==0)d++,n/=i;
ans=(ll)ans*dp[r][d]%mod;
}
if(n>1)ans=(ll)ans*dp[r][1]%mod;
*/
printf("%d\n",ans);
}
return ;
}