【分析】
对于斯特林数:
第一类斯特林数和第二类斯特林数的分组都不是排列,就是说组是没有编号的,如果加上编号,乘上k!即可,或者在递推公式里面乘。
比如: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1)*k (表示如果有一个新的组,要考虑它的位置对答案影响)
第一类斯特林数的n个物品循环排列方案事实上等于n-1个物品的排列方案,因为n!/n=(n-1)!
所以如果你要分组,组内一个元素位置要固定,那么就等于循环排列。(如本题)
斯特林数长这样:
第一类斯特林数有以下性质:
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Mod 1000000007
#define LL long long
#define Maxn 2010 LL s[Maxn][Maxn],c[Maxn][Maxn]; void init()
{
memset(s,,sizeof(s));
memset(c,,sizeof(c));
s[][]=;
for(int i=;i<=Maxn-;i++) c[i][]=;
for(int i=;i<=Maxn-;i++)
for(int j=;j<=Maxn-;j++)
{
s[i][j]=(s[i-][j-]+(i-)*s[i-][j])%Mod;
c[i][j]=(c[i-][j]+c[i-][j-])%Mod;
}
} int main()
{
init();
int T;
scanf("%d",&T);
while(T--)
{
int n,x,y;
scanf("%d%d%d",&n,&x,&y);
printf("%lld\n",(s[n-][x+y-]*c[x+y-][x-])%Mod);
}
return ;
}
[HDU 4372]
2016-09-22 13:50:59