目前研究人员正在使用的深度学习框架不尽相同,有 TensorFlow 、PyTorch、Keras等。这些深度学习框架被应用于计算机视觉、语音识别、自然语言处理与生物信息学等领域,并获取了极好的效果。其中,PyTorch是当前难得的简洁优雅且高效快速的框架,当前开源的框架中,没有哪一个框架能够在灵活性、易用性、速度这三个方面有两个能同时超过PyTorch。
基于此,磐小仙邀请到了作者 News(CS硕士) ,在接下来的这段时间里,他将会给大家带来关于PyTorch的一个专栏。
这个专栏主要针对想要学习PyTorch的学生群体或者深度学习爱好者。通过专栏的学习,能够实现零基础想要了解和学习深度学习,降低自学的难度,快速学习PyTorch。
1. 专栏介绍
PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络,这一点是现在很多主流框架如TensorFlow都不支持的。PyTorch提供了两个高级功能:
具有强大的GPU加速的张量计算(如Numpy)
包含自动求导系统的深度神经网络
除了Facebook之外,Twitter、GMU和Salesforce等机构都采用了PyTorch。
官方教程包含了 PyTorch 介绍,安装教程;60分钟快速入门教程,可以迅速从小白阶段完成一个分类器模型;计算机视觉常用模型,方便基于自己的数据进行调整,不再需要从头开始写;自然语言处理模型,聊天机器人,文本生成等生动有趣的项目。
总而言之:
如果你想了解一下 PyTorch,可以看介绍部分。
如果你想快速入门 PyTorch,可以看60分钟快速入门。
如果你想解决计算机视觉问题,可以看计算机视觉部分。
如果你想解决自然语言处理问题,可以看NLP 部分。
后续会更新强化学习和生成对抗网络部分内容。
2. 专栏目录
第一章:PyTorch之简介与下载
PyTorch简介
PyTorch环境搭建
第二章:PyTorch之60min入门
PyTorch 入门
PyTorch 自动微分
PyTorch 神经网络
PyTorch 图像分类器
PyTorch 数据并行处理
第三章:PyTorch之入门强化
数据加载和处理
PyTorch小试牛刀
迁移学习
混合前端的seq2seq模型部署
保存和加载模型
第四章:PyTorch之图像篇
微调基于torchvision 0.3的目标检测模型
微调TorchVision模型
空间变换器网络
使用PyTorch进行Neural-Transfer
生成对抗示例
使用ONNX将模型转移至Caffe2和移动端
第五章:PyTorch之文本篇
聊天机器人教程
使用字符级RNN生成名字
使用字符级RNN进行名字分类
在深度学习和NLP中使用Pytorch
使用Sequence2Sequence网络和注意力进行翻译
第六章:PyTorch之生成对抗网络
第七章:PyTorch之强化学习
3. 更新计划
更新频率:一周四篇
开始时间:下周
4. 学习交流
为了方便大家更好地与作者进行沟通交流,为此磐小仙针对这个专栏成立了QQ和微信读者交流群,同时邀请了专栏的作者News坐镇交流群,大家想近距离与作者沟通,都可以来加入。
加入方式:扫描下方微信群二维码,或者QQ群二维码,即可加入交流群。
扫描上方二维码,加入QQ交流群
扫描上方二维码,加入微信交流群