1927: [Sdoi2010]星际竞速

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 1576  Solved: 954
[Submit][Status][Discuss]

Description

10 年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一,
夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一。
赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有
一个不同的引力值。大赛要求车手们从一颗与这 N 颗行星之间没有任何航路的
天体出发,访问这 N 颗行星每颗恰好一次,首先完成这一目标的人获得胜利。
由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾
驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作
为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。
在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航
路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空
间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。
天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能
出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大
的星球,否则赛车就会发生爆炸。
尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了
全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少
的时间完成比赛。

Input

第一行是两个正整数 N, M。
第二行 N 个数 A1~AN, 其中Ai表示使用能力爆发模式到达行星 i 所需的定位
时间。
接下来 M行,每行 3个正整数ui, vi, wi,表示在编号为 ui和vi的行星之间存
在一条需要航行wi时间的星际航路。
输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有
两颗行星引力值相同。

Output

仅包含一个正整数,表示完成比赛所需的最少时间。

Sample Input

3 3
1 100 100
2 1 10
1 3 1
2 3 1

Sample Output

12

HINT

说明:先使用能力爆发模式到行星 1,花费时间 1。
然后切换到高速航行模式,航行到行星 2,花费时间10。
之后继续航行到行星 3完成比赛,花费时间 1。
虽然看起来从行星 1到行星3再到行星 2更优,但我们却不能那样做,因为
那会导致超能电驴爆炸。

对于 30%的数据 N≤20,M≤50;
对于 70%的数据 N≤200,M≤4000;
对于100%的数据N≤800, M≤15000。输入数据中的任何数都不会超过106

输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到
自己的航道。

Source

【思路】

最小费用最大流。

构图:拆点Xi,Yi。连边(S,Xi,1,0)(Yi,T,1,0),如果i和j有长度为w的边则连(Xi,Yj,1,w)。注意对于”能量爆发”而言并不需要每对点之间连边,到每个点的瞬移时间是固定的,如果值为w只需要连边(S,Yi,1,w)即可,相当于能量爆发与高速行驶之间的最优抉择。

【代码】

 #include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; typedef long long LL;
const int maxn = +;
const int INF = 1e9; struct Edge { int u,v,cap,flow,cost;
};
struct zkw {
int n,m,s,t;
int d[maxn],vis[maxn];
vector<Edge> es;
vector<int> G[maxn]; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
int m=es.size();
G[u].push_back(m-) , G[v].push_back(m-);
}
bool spfa() {
memset(vis,,sizeof(vis));
for(int i=;i<n;i++) d[i]=INF;
queue<int> q;
d[t]= , vis[t]= , q.push(t);
while(!q.empty()) {
int u=q.front(); q.pop() , vis[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(es[G[u][i]^].cap && d[v]>d[u]-e.cost) {
d[v]=d[u]-e.cost;
if(!vis[v]) {
vis[v]=; q.push(v);
}
}
}
}
return d[s]!=INF;
}
int dfs(int u,int a,LL& cost) {
vis[u]=; if(u==t) return a;
int used=,w;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(d[v]==d[u]-e.cost && e.cap && !vis[v]) {
w=dfs(v,min(a-used,e.cap),cost);
e.cap-=w , es[G[u][i]^].cap+=w;
cost+=w*e.cost;
used+=w; if(used==a) return a;
}
}
return used;
}
int Mincost(int s,int t,LL& cost) {
this->s=s , this->t=t;
int flow=; cost=;
while(spfa()) {
vis[t]=;
while(vis[t]) {
memset(vis,,sizeof(vis));
flow+=dfs(s,INF,cost);
}
}
return flow;
}
} mc; int n,m; int main() {
scanf("%d%d",&n,&m);
mc.init(n+n+);
int s=n+n,t=s+,u,v,w;
FOR(i,,n) {
scanf("%d",&w);
mc.AddEdge(s,i,,);
mc.AddEdge(i+n,t,,);
mc.AddEdge(s,i+n,,w);
}
FOR(i,,m) {
scanf("%d%d%d",&u,&v,&w);
u--,v--; if(v<u) swap(u,v);
mc.AddEdge(u,v+n,,w);
}
LL cost;
mc.Mincost(s,t,cost);
printf("%lld",cost);
return ;
}
05-08 08:19