logistic regression是分类算法中非常重要的算法,也是非常基础的算法。logistic regression从整体上考虑样本预测的精度,用判别学习模型的条件似然进行参数估计,假设样本遵循iid,参数估计时保证每个样本的预测值接近真实值的概率最大化。这样的结果,只能是牺牲一部分的精度来换取另一部分的精度。而svm从局部出发,假设有一个分类平面,找出所有距离分类平面的最近的点(support vector,数量很少),让这些点到平面的距离最大化,那么这个分类平面就是最佳分类平面。从这个角度来看待两个算法,可以得出logistic regression的精度肯定要低于后者。今天主要写logistic regression的Python代码。logistic regression的推导过程比较简单:

原创:logistic regression实战(一):SGD Without lasso-LMLPHP

  第一个公式是条件似然函数估计,意思是指定未知常量theta(;表示频率学派),对于每个输入feature vector x(i),产生y(i)的概率都最大,取对数是为了求导方便。第二个公式是sigmoid函数的导数,在这里推导出具体的导函数(推导过程非常简单,复合函数求导法则),第三个公式是求出的梯度(实际为偏导数组成的向量,梯度与方向导数同方向时取得最大值,相反时取得最小值)。公式3的线性意义为:对于容量为m的样本(矩阵mxn),权重为nx1的列向量,每一行的样本数据与权重向量相乘求得预测值,m行样本的预测值组成mx1的列向量(其数值为exp(-inX)),其实就是mxn的样本矩阵左乘权重向量nx1,因为的矩阵的本质是线性变换,相当于每一行样本数据投影到权重向量。得到预测值的列向量后,与真实值向量(需要转置)做差值得到新的列向量。最后样本矩阵倒置,然后左乘这个向量得到nx1的权重向量(梯度)。这个过程是计算批量梯度。当似然函数取得最大时,就是损失函数最小,所以二者是相反的关系,最后结果也就是梯度上升法。

  对于逻辑回归的损失函数,也可以从另外一个角度来理解。上面的公式我们看到损失函数和最大似然函数是相反的关系,一般情况下,logistic regression的loss function 可以采用交叉熵的形式,然后取mean。

  SGD(stochastic gradient descent)在计算的过程中,每次迭代不用计算所用样本,而是随机选取一个样本进行梯度上升(下降),在工程实践中可以满足精度要求,而且时间复杂度比批量要低。对于SGD而言,学习速率alpha的选取,随着循环次数增加,刚开始的时候,梯度下降应该比较快,到后期的时候,可能会出现在某一个值徘徊的情况,而且下降速率会越来越慢。所以选取一个比较合理的study rate,应该是先选取到的样本study rate相对较高,后面的相对较小,这样比较合理。

  在训练出模型后,预测时应该使用"五折交叉验证理论"寻找出最优模型出来(调节参数的过程),这个过程一般用RMSE(均方根误差)来衡量,并且可以定义一个基准均方根误差。在用最优模型预测时取得的RMSE与基准RMSE对比,分析数据结果。

  本文主要探讨logistic regression的SGD算法,并且不考虑正则化。事实上,在高维度的情况下,泛化能力或者正则化技术非常关键。在90年代有学者提出lasso后,至今有很多方法实践了lasso,比如LARS,CD……。下一篇博客将探讨lasso技术,并且动手实践CD算法。接下来,上传最近写的SGD Python代码,首先是引入模块:logisticRegression.py,这里面定义了两个class:LogisticRegressionWithSGD,LRModel,还有全局函数RMSE,loadDataSet和sigmoid函数。后面是测试代码,主要是参数调优。

logisticRegression.py:

 '''
Created on 2017/03/15
Logistic Regression without lasso
@author: XueQiang Tong
'''
'''
this algorithm include SGD,batch gradient descent except lasso regularization,So the generalization
ability is relatively weak, follow-up and then write a CD algorithm for lasso.
'''
from numpy import *
import matplotlib.pyplot as plt
import numpy as np; # load dataset into ndarray(numpy)
def loadDataSet(filepath, seperator="\t"):
with open(filepath) as fr:
lines = fr.readlines();
num_samples = len(lines);
dimension = len(lines[0].strip().split(seperator));
dataMat = np.zeros((num_samples, dimension));
labelMat = []; index = 0;
for line in lines:
sample = line.strip().split();
feature = list(map(np.float32, sample[:-1]));
dataMat[index, 1:] = feature;
dataMat[index, 0] = 1.0;
labelMat.append(float(sample[-1]));
index += 1; return dataMat, array(labelMat); #sigmoid function
def sigmoid(inX):
return 1.0/(1+exp(-inX)) # compute rmse
def RMSE(true,predict):
true_predict = zip(true,predict);
sub = [];
for r,p in true_predict:
sub.append(math.pow((r-p),2));
return math.sqrt(mean(sub)); def maxstep(dataMat):
return 2 / abs(np.linalg.det(np.dot(dataMat.transpose(),dataMat))); class LRModel:
def __init__(self,weights = np.empty(10),alpha = 0.01,iter = 150):
self.weights = weights;
self.alpha = alpha;
self.iter = iter; #predict
def predict(self,inX):
prob = sigmoid(dot(inX,self.weights))
if prob > 0.5: return 1.0
else: return 0.0 def getWeights(self):
return self.weights; def __getattr__(self, item):
if item == 'weights':
return self.weights; class LogisticRegressionWithSGD:
# batch gradient descent
@classmethod
def batchGradDescent(cls,data,maxCycles = 500,alpha = 0.001):
dataMatrix = mat(data[0]) # convert to NumPy matrix
labelMat = mat(data[1]).transpose() # convert to NumPy matrix
m,n = shape(dataMatrix)
weights = ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights) # compute predict_value
error = (labelMat - h) # compute deviation
weights = weights + alpha * dataMatrix.transpose()* error # update weight model = LRModel(weights = weights,alpha = alpha,iter = maxCycles);
return model; '''
# draw samples of the scatter plot to view the distribution of sample points
@classmethod
def viewScatterPlot(cls,weights,dataMat,labelMat):
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s',label='1')
ax.scatter(xcord2, ycord2, s=30, c='green',label='0')
plt.legend();
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(mat(x), mat(y))
plt.xlabel('X1'); plt.ylabel('X2');
plt.show()
'''
@classmethod
def train_nonrandom(cls,data,alpha = 0.01):
dataMatrix = data[0];
classLabels = data[1];
m,n = shape(dataMatrix);
weights = ones(n) #initialize to all ones
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights));
error = classLabels[i] - h;
weights = weights + alpha * error * dataMatrix[i]; model = LRModel(weights = weights,alpha = alpha);
return model; @classmethod
def train_random(cls,data, numIter=150):
dataMatrix = data[0];
classLabels = data[1];
m,n = shape(dataMatrix);
weights = ones(n); #initialize to all ones
indices = np.arange(len(dataMatrix))
for iter in range(numIter):
np.random.shuffle(indices)
for index in indices:
alpha = 4 / (1.0 + iter + index) + 0.0001 #apha decreases with iteration, does not
h = sigmoid(sum(dataMatrix[index]*weights));
error = classLabels[index] - h;
weights = weights + alpha * error * array(dataMatrix[index]); model = LRModel(weights = weights,iter = numIter);
return model; def colicTest(self):
data = loadDataSet('G:\\testSet.txt');
trainWeights = self.stoGradDescent_random(data);
dataMat = data[0];
labels = data[1];
errnums = 0;
for index in range(dataMat.shape[0]):
preVal = self.predict(dataMat[index,:],trainWeights);
if(preVal != labels[index]):
errnums += 1;
print('error rate:%.2f' % (errnums/dataMat.shape[0]));
return errnums; def multiTest(self):
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += self.colicTest()
print("after %d iterations the average error rate is: %.2f" % (numTests, errorSum/numTests))
 

测试代码,把最优模型保存在npy文件里,以后使用的时候,直接取出来,不用再训练了。

 from logisticRegression import *;
from numpy import *;
import math; def main():
dataMat, labels = loadDataSet('G:\\testSet.txt');
num_samples = dataMat.shape[0]; num_trains = int(num_samples * 0.6);
num_validations = int(num_samples * 0.2);
num_tests = int(num_samples * 0.2); data_trains = dataMat[:num_trains, :];
data_validations = dataMat[num_trains:(num_trains + num_validations), :];
data_tests = dataMat[(num_trains + num_validations):, :]; label_trains = labels[:num_trains];
label_validations = labels[num_trains:(num_trains + num_validations)];
label_tests = labels[(num_trains + num_validations):];
'''
minrmse = (1 << 31) - 1;
bestModel = LRModel();
iterList = [10, 20, 30, 80]; for iter in iterList:
model = LogisticRegressionWithSGD.train_random((data_trains, label_trains), numIter=iter);
preVals = zeros(num_validations);
for i in range(num_validations):
preVals[i] = model.predict(data_validations[i, :]); rmse = RMSE(label_validations, preVals);
if rmse < minrmse:
minrmse = rmse;
bestModel = model; print(bestModel.iter, bestModel.weights, minrmse);
save('D:\\Python\\models\\weights.npy',bestModel.weights);''' #用最佳模型预测测试集的评分,并计算和实际评分之间的均方根误差
weights = load('D:\\Python\\models\\weights.npy'); LogisticRegressionWithSGD.viewScatterPlot(weights,dataMat,labels);#显示散点图
model = LRModel();
model.weights = weights; preVals = zeros(num_tests);
for i in range(num_tests):
preVals[i] = model.predict(data_tests[i,:]); testRMSE = RMSE(label_tests,preVals); #预测产生的均方根误差
#用基准偏差衡量最佳模型在测试数据上的预测精度
tavMean = mean(hstack((label_trains,label_validations)));
baseRMSE = math.sqrt(mean((label_tests - tavMean) ** 2)) #基准均方根误差 improvement = abs(testRMSE - baseRMSE) / baseRMSE * 100; print("The best model improves the base line by %% %1.2f" % (improvement)); if __name__ == '__main__':
main();
运行结果:
样本点的散点图:
原创:logistic regression实战(一):SGD Without lasso-LMLPHP
最佳迭代次数,权重以及RMSE: 10 [ 12.08509707   1.4723024   -1.86595103] 0.0
The best model improves the base line by % 55.07 另外,由于训练过程中是随机选取样本点,所以迭代次数相同的情况下,权重以及RMSE有可能不同,我们要的是RMSE最小的模型!
算法比较简单,但是用Python的nump库实施的时候,有很多注意的细节,只有经过自己仔细的理论推导然后再代码实施后,才能算基本掌握了一个算法。写代码及优化的过程是很费时的,后续还要改进算法,深化理论研究,并且坚持理论与编程结合,切不可眼高手低!
05-11 20:56