题目链接

\(O(n^2)\)的\(DP\)很容易想,\(f[u][i]\)表示在\(u\)的子树中距离\(u\)为\(i\)的点的个数,则\(f[u][i]=\sum f[v][i-1]\)

长链剖分。

\(O(1)\)继承重儿子的信息,再暴力合并其他轻儿子的信息,时间复杂度是线性的。

继承重儿子用指针实现,非常巧妙。

#include <cstdio>
int xjc; char ch;
inline int read(){
xjc = 0; ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){ xjc = xjc * 10 + ch - '0'; ch = getchar(); }
return xjc;
}
const int MAXN = 1000010;
struct Edge{
int next, to;
}e[MAXN << 1];
int head[MAXN], num, son[MAXN], len[MAXN], *f[MAXN], tmp[MAXN], *id = tmp, ans[MAXN], n;
inline void Add(int from, int to){
e[++num].to = to; e[num].next = head[from]; head[from] = num;
e[++num].to = from; e[num].next = head[to]; head[to] = num;
}
void dfs(int u, int fa){
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa){
dfs(e[i].to, u);
if(len[e[i].to] > len[son[u]])
son[u] = e[i].to;
}
len[u] = len[son[u]] + 1;
}
void dp(int u, int fa){
f[u][0] = 1;
if(son[u]) f[son[u]] = f[u] + 1, dp(son[u], u), ans[u] = ans[son[u]] + 1;
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa && e[i].to != son[u]){
f[e[i].to] = id; id += len[e[i].to]; dp(e[i].to, u);
for(int j = 1; j <= len[e[i].to]; ++j){
f[u][j] += f[e[i].to][j - 1];
if(f[u][j] > f[u][ans[u]] || f[u][j] == f[u][ans[u]] && j < ans[u])
ans[u] = j;
}
}
if(f[u][ans[u]] == 1) ans[u] = 0;
}
int main(){
n = read();
for(int i = 1; i < n; ++i)
Add(read(), read());
dfs(1, 0); f[1] = id; id += len[1];
dp(1, 0);
for(int i = 1; i <= n; ++i)
printf("%d\n", ans[i]);
getchar();
}
05-11 21:51