Problem 2107 Hua Rong Dao

Accept: 106    Submit: 197
Time Limit: 1000 mSec    Memory Limit : 32768 KB

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP Problem Description

Cao Cao was hunted down by thousands of enemy soldiers when he escaped from Hua Rong Dao. Assuming Hua Rong Dao is a narrow aisle (one N*4 rectangle), while Cao Cao can be regarded as one 2*2 grid. Cross general can be regarded as one 1*2 grid.Vertical general can be regarded as one 2*1 grid. Soldiers can be regarded as one 1*1 grid. Now Hua Rong Dao is full of people, no grid is empty.

There is only one Cao Cao. The number of Cross general, vertical general, and soldier is not fixed. How many ways can all the people stand?

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP Input

There is a single integer T (T≤4) in the first line of the test data indicating that there are T test cases.

Then for each case, only one integer N (1≤N≤4) in a single line indicates the length of Hua Rong Dao.

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP Output

For each test case, print the number of ways all the people can stand in a single line.

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP Sample Input

212

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP Sample Output

018

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP Hint

Here are 2 possible ways for the Hua Rong Dao 2*4.

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP

fzu 2107 Hua Rong Dao(状态压缩)-LMLPHP Source

“高教社杯”第三届福建省大学生程序设计竞赛

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N=(1<<4);
int f[6][N][2]={0};//f[i][j][k]//放完第i-1行第i行的状态j,k=1放曹操
void dfs(int row,int col,int pre,int now,int cao,int k){
if(col>=4){//放完4列,pre={1111}
f[row][now][cao]+=k;//放完pre得到f[now]+=f[pre]
//cout<<row<<" "<<now<<" "<<cao<<endl;
return;
}
if(pre&(1<<col)){//第col已经放过
dfs(row,col+1,pre,now,cao,k);
return;
}
//a grid
dfs(row,col+1,pre|(1<<col),now,cao,k);
//a 1*2
dfs(row,col+1,pre|(1<<col),now|(1<<col),cao,k);//放一竖,多出一块
int t=(1<<col)|(1<<(col+1));
if(col<3&&(pre&(1<<(col+1)))==0){
//a 2*1
dfs(row,col+1,pre|t,now,cao,k);
//put caocao
if(cao==0)dfs(row,col+1,pre|t,now|t,1,k);
}
}
int main(){
int i,j,k;
f[0][N-1][0]=1;
for(i=1;i<=5;i++)
for(j=0;j<N;j++){
if(f[i-1][j][0])dfs(i,0,j,0,0,f[i-1][j][0]);
if(f[i-1][j][1])dfs(i,0,j,0,1,f[i-1][j][1]);
}
scanf("%d",&k);
while(k--){
scanf("%d",&i);
printf("%d\n",f[i+1][0][1]);
}
return 0;
}

05-02 23:18