题目描述

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。

输入输出格式

输入格式:

输入文件ball.in共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。

输出格式:

输出文件ball.out共一行,有一个整数,表示符合题意的方法数。

输入输出样例

输入样例#1:

3 3
输出样例#1:

2

说明

40%的数据满足:3<=n<=30,1<=m<=20

100%的数据满足:3<=n<=30,1<=m<=30

2008普及组第三题

dp[i][j] 表示第i轮 球在j那里

方程dp[i][j]=dp[i-1][j%n+1]+dp[i-1][j-1==0?n:j-1];

屠龙宝刀点击就送

#include <cstdio>

int dp[][],n,m;
int Main()
{
scanf("%d%d",&n,&m);
dp[][]=;
for(int i=;i<=m;++i)
for(int j=;j<=n;++j)
dp[i][j]=dp[i-][j%n+]+dp[i-][j-==?n:j-];
printf("%d\n",dp[m][]);
return ;
}
int sb=Main();
int main(int argc,char *argv[]){;}
05-08 08:42