博客转载自:https://www.leiphone.com/news/201707/ETupJVkOYdNkuLpz.html
雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号slamtec-sh)技术顾问,专注SLAM及相关传感器研发应用。
SLAM(同步定位与地图构建),是指运动物体根据传感器的信息,一边计算自身位置,一边构建环境地图的过程,解决机器人等在未知环境下运动时的定位与地图构建问题。目前,SLAM的主要应用于机器人、无人机、无人驾驶、AR、VR等领域。其用途包括传感器自身的定位,以及后续的路径规划、运动性能、场景理解。
由于传感器种类和安装方式的不同,SLAM的实现方式和难度会有一定的差异。按传感器来分,SLAM主要分为激光SLAM和VSLAM两大类。其中,激光SLAM比vSLAM起步早,在理论、技术和产品落地上都相对成熟。基于视觉的SLAM方案目前主要有两种实现路径,一种是基于RGBD的深度摄像机,比如Kinect;还有一种就是基于单目、双目或者鱼眼摄像头的。VSLAM目前尚处于进一步研发和应用场景拓展、产品逐渐落地阶段。
激光SLAM:早在2005年的时候,激光SLAM就已经被研究的比较透彻,框架也已初步确定。激光SLAM,是目前最稳定、最主流的定位导航方法。
激光SLAM地图构建
VSLAM(基于视觉的定位与建图):随着计算机视觉的迅速发展,视觉SLAM因为信息量大,适用范围广等优点受到广泛关注。
(1)基于深度摄像机的Vslam,跟激光SLAM类似,通过收集到的点云数据,能直接计算障碍物距离;
(2)基于单目、鱼眼相机的VSLAM方案,利用多帧图像来估计自身的位姿变化,再通过累计位姿变化来计算距离物体的距离,并进行定位与地图构建;
图片来源:百度AI一直以来,不管是产业界还是学术界,对激光SLAM和VSLAM到底谁更胜一筹,谁是未来的主流趋势这一问题,都有自己的看法和见解。下面就简单从几个方面对比了一下激光SLAM和VSLAM。
成本
不管是Sick,北洋,还是Velodyne,价格从几万到几十万不等,成本相对来说比较高,但目前国内也有低成本激光雷达(RPLIDAR)解决方案。VSLAM主要是通过摄像头来采集数据信息,跟激光雷达一对比,摄像头的成本显然要低很多。但激光雷达能更高精度的测出障碍点的角度和距离,方便定位导航。
应用场景
从应用场景来说,VSLAM的应用场景要丰富很多。VSLAM在室内外环境下均能开展工作,但是对光的依赖程度高,在暗处或者一些无纹理区域是无法进行工作的。而激光SLAM目前主要被应用在室内,用来进行地图构建和导航工作。
地图精度
激光SLAM在构建地图的时候,精度较高,思岚科技的RPLIDAR系列构建的地图精度可达到2cm左右;VSLAM,比如常见的,大家也用的非常多的深度摄像机Kinect,(测距范围在3-12m之间),地图构建精度约3cm;所以激光SLAM构建的地图精度一般来说比VSLAM高,且能直接用于定位导航。
易用性
激光SLAM和基于深度相机的VSLAM均是通过直接获取环境中的点云数据,根据生成的点云数据,测算哪里有障碍物以及障碍物的距离。但是基于单目、双目、鱼眼摄像机的VSLAM方案,则不能直接获得环境中的点云,而是形成灰色或彩色图像,需要通过不断移动自身的位置,通过提取、匹配特征点,利用三角测距的方法测算出障碍物的距离。
安装方式
雷达最先开始应用于军事行业,后来逐渐民用。被大家广泛知晓最先应该是从谷歌的无人车上所知道的。当时Velodyne雷达体积、重量都较大,应用到一些实际场景中显然不适合。比如无人机、AR、VR这种,本身体积就很小,再搭载大体积的激光雷达的话,根本无法使用,也影响美感和性能。所以VSLAM的出现,利用摄像头测距,弥补了激光雷达的这一缺点,安装方式可以随着场景的不同实现多元化。
其他
除了上面几点之外,在探测范围、运算强度、实时数据生成、地图累计误差等方面,激光SLAM和视觉SLAM也会存在一定的差距。
数据来源:KITTI
可以明显看出,对于同一个场景,VSLAM在后半程中出现了偏差,这是因为累积误差所引起的,所以VSLAM要进行回环检验
激光SLAM是目前比较成熟的定位导航方案,视觉SLAM是未来研究的一个主流方向。所以,未来,多传感器的融合是一种必然的趋势。取长补短,优势结合,为市场打造出真正好用的、易用的SLAM方案。
本文转自雷锋网,如需转载请至雷锋网官网申请授权。