大意: 给定$n$元素序列$a$, 现在想要让$gcd(a_1,a_2,...,a_n)=1$. 对于每个$a_i$可以除以一个不超过$k$的因子, 代价为$e_i$, 假设一共选择了$x$个元素去除, 代价和为$y$, 求$xy$的最小值.

设$g=gcd(a_1,a_2,...,a_n)=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$, 有$1\le r \le 11$

我们考虑最优解的结构, 对于一个数$a_i$, 它的某个素因子$p_k$想要对答案产生贡献则必须将$p_k$全部除去, 所以每个数都可以用一个二进制状态表示, 并且显然最优解至多选择$r$个$a_i$. 这样的话就可以得到暴力代码, 转移复杂度是$O(nr2^{2r})$, 显然过不去

//dp[i][j][k] 表示前i个数取j个数状态为k时的最小值
memset(dp,0x3f,sizeof dp);
dp[0][0][0]=0;
REP(i,1,n) {
//预处理出每个状态需要除的数num
REP(j,1,S) if (num[j]<=k) {
REP(x,0,S) {
REP(t,1,r) {
chkmin(dp[i][t][x|j],dp[i-1][t-1][x]+a[i].e);
}
}
}
}
ll ans = INF;
REP(i,1,r) if (dp[n][i][S]!=INF) ans=min(ans, dp[n][i][S]*i);

下面考虑优化

  • 对于每个$a_i$, 对于它不在$g$内的素因子直接除去不考虑, 打表发现这样不同的$a_i$不超过M=12000
  • 对于每个不同的$a_i$只取$e$前$r$小的, 并且每个状态只至多转移$r$次
  • 枚举补集的子集, 可将$2^{2r}$优化为$3^r$

这样转移的复杂度就为$O(Mr2^r+r^23^r)$

最后要注意最大素因子是$O(max{a_i})$的, 要开long long 存!!

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
//head const int N = 1e6+10; int n, w[N];
ll k, g;
struct _ {
ll a;
int e;
bool operator < (const _ &rhs) const {
return e<rhs.e;
}
} a[N];
vector<ll> A;
map<ll,int> vis;
ll dp[2][12][1<<11], num[1<<11]; void factor(ll g) {
int mx = sqrt(g+0.5);
REP(i,2,mx) if (g%i==0) {
A.pb(i);
while (g%i==0) g/=i;
}
if (g>1) A.pb(g);
} void chkmin(ll &x, ll y) {x=min(x,y);} int main() {
scanf("%d%lld", &n, &k);
REP(i,1,n) scanf("%lld", &a[i].a),g=gcd(g,a[i].a);
if (g==1) return puts("0"),0;
REP(i,1,n) scanf("%d", &a[i].e);
sort(a+1,a+1+n);
factor(g);
int r = A.size(), S = (1<<r)-1, cur = 0;
memset(dp[0],0x3f,sizeof dp[0]);
dp[0][0][0]=0;
REP(i,1,n) {
ll b = 1;
REP(j,0,r-1) if (a[i].a%A[j]==0) {
ll t = 1;
while (a[i].a%A[j]==0) a[i].a/=A[j],t*=A[j];
num[1<<j] = t;
b *= t;
}
if (++vis[b]>r) continue;
num[0] = 1;
cur ^= 1;
memcpy(dp[cur],dp[cur^1],sizeof dp[cur]);
REP(j,1,S) {
num[j] = num[j^j&-j]*num[j&-j];
if (num[j]>k) continue;
if (++vis1[j]>r) continue;
ll x = ~j&S;
PER(t,0,r-1) {
for (int y=x; y; y=(y-1)&x) if (dp[cur^1][t][y]!=INF) {
chkmin(dp[cur][t+1][y^j],dp[cur^1][t][y]+a[i].e);
}
chkmin(dp[cur][t+1][j],dp[cur^1][t][0]+a[i].e);
}
}
}
ll ans = INF;
REP(i,1,r) if (dp[cur][i][S]!=INF) {
ans = min(ans, dp[cur][i][S]*i);
}
printf("%lld\n", ans==INF?-1:ans);
}
05-06 06:17