第一周-调用weka算法进行数据挖掘

  • 简单数据集data.txt

    @relation weather
    
    @attribute outlook {sunny, overcast, rainy}
    @attribute temperature numeric
    @attribute humidity numeric
    @attribute windy {TRUE, FALSE}
    @attribute play {yes, no} @data
    sunny,85,85,FALSE,no
    sunny,80,90,TRUE,no
    overcast,83,86,FALSE,yes
    rainy,70,96,FALSE,yes
    rainy,68,80,FALSE,yes
    rainy,65,70,TRUE,no
    overcast,64,65,TRUE,yes
    sunny,72,95,FALSE,no
    sunny,69,70,FALSE,yes
    rainy,75,80,FALSE,yes
    sunny,75,70,TRUE,yes
    overcast,72,90,TRUE,yes
    overcast,81,75,FALSE,yes
    rainy,71,91,TRUE,no
  • 在eclipse中新建项目导入weka.jar包,调用weka中的一些算法。

    package test;

    import java.io.BufferedReader;
    import java.io.FileNotFoundException;
    import java.io.FileReader;
    import weka.classifiers.Classifier;
    import weka.classifiers.Evaluation;
    import weka.classifiers.evaluation.NominalPrediction;
    import weka.classifiers.rules.DecisionTable;
    import weka.classifiers.rules.PART;
    import weka.classifiers.trees.DecisionStump;
    import weka.classifiers.trees.J48;
    import weka.core.FastVector;
    import weka.core.Instances; @SuppressWarnings("deprecation")
    public class WeakTest {
    public static BufferedReader readDataFile(String filename) {
    BufferedReader inputReader = null; try {
    inputReader = new BufferedReader(new FileReader(filename));
    } catch (FileNotFoundException ex) {
    System.err.println("File not found: " + filename);
    } return inputReader;
    } public static Evaluation classify(Classifier model,
    Instances trainingSet, Instances testingSet) throws Exception {
    Evaluation evaluation = new Evaluation(trainingSet); model.buildClassifier(trainingSet);
    evaluation.evaluateModel(model, testingSet); return evaluation;
    } public static double calculateAccuracy(FastVector predictions) {
    double correct = 0; for (int i = 0; i < predictions.size(); i++) {
    NominalPrediction np = (NominalPrediction) predictions.elementAt(i);
    if (np.predicted() == np.actual()) {
    correct++;
    }
    } return 100 * correct / predictions.size();
    } public static Instances[][] crossValidationSplit(Instances data, int numberOfFolds) {
    Instances[][] split = new Instances[2][numberOfFolds]; for (int i = 0; i < numberOfFolds; i++) {
    split[0][i] = data.trainCV(numberOfFolds, i);
    split[1][i] = data.testCV(numberOfFolds, i);
    } return split;
    } public static void main(String[] args) throws Exception {
    BufferedReader datafile = readDataFile("E:\\yuce/data.txt"); Instances data = new Instances(datafile);
    data.setClassIndex(data.numAttributes() - 1); // Do 10-split cross validation
    Instances[][] split = crossValidationSplit(data, 10); // Separate split into training and testing arrays
    Instances[] trainingSplits = split[0];
    Instances[] testingSplits = split[1]; // Use a set of classifiers
    Classifier[] models = {
    new J48(), // a decision tree
    new PART(),
    new DecisionTable(),//decision table majority classifier
    new DecisionStump() //one-level decision tree
    }; // Run for each model
    for (int j = 0; j < models.length; j++) { // Collect every group of predictions for current model in a FastVector
    FastVector predictions = new FastVector(); // For each training-testing split pair, train and test the classifier
    for (int i = 0; i < trainingSplits.length; i++) {
    Evaluation validation = classify(models[j], trainingSplits[i], testingSplits[i]); predictions.appendElements(validation.predictions()); // Uncomment to see the summary for each training-testing pair.
    //System.out.println(models[j].toString());
    } // Calculate overall accuracy of current classifier on all splits
    double accuracy = calculateAccuracy(predictions); // Print current classifier's name and accuracy in a complicated,
    // but nice-looking way.
    System.out.println("Accuracy of " + models[j].getClass().getSimpleName() + ": "
    + String.format("%.2f%%", accuracy)
    + "\n---------------------------------");
    } }
    }
  • 运行截图
    第一周-调用weka算法进行数据挖掘-LMLPHP

第一周-调用weka算法进行数据挖掘-LMLPHP

第一周-调用weka算法进行数据挖掘-LMLPHP

05-11 19:35