题解
考虑一个点双(因为是简单环),如果没有环(两点一线),那么乘上K
如果有一个环,那么用polya定理,每个置换圈有gcd(i,n)个循环节
如果有两个及以上的环,任何一种置换都合法,那么只和每个颜色用了多少个有关,用插板法算组合数就是\(\binom{n + k - 1}{k - 1}\)
代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define RG register
#define MAXN 200005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,M,K;
struct node {
int to,next;
}E[1005];
int head[55],sumE,fac[205],invfac[205],dfn[55],low[55],idx,sta[105],top,col[55],cnt,ans;
vector<int> ver;
int mul(int a,int b) {return 1LL * a * b % MOD;}
int inc(int a,int b) {a = a + b;if(a >= MOD) a -= MOD;return a;}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
int gcd(int a,int b) {
return b == 0 ? a : gcd(b,a % b);
}
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
int C(int n,int m) {
if(n < m) return 0;
return mul(mul(fac[n],invfac[m]),invfac[n - m]);
}
void Tarjan(int u,int fa) {
dfn[u] = low[u] = ++idx;
sta[++top] = u;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa) {
if(dfn[v]) low[u] = min(low[u],dfn[v]);
else {
Tarjan(v,u);
if(low[v] >= dfn[u]) {
ver.clear();
++cnt;
col[u] = cnt;
ver.pb(u);
while(1) {
int x = sta[top--];
col[x] = cnt;
ver.pb(x);
if(x == v) break;
}
int tot = 0;
for(auto k : ver) {
for(int j = head[k] ; j ; j = E[j].next) {
if(col[E[j].to] == cnt) ++tot;
}
}
tot /= 2;
if(tot == 1) ans = mul(ans,K);
else if(tot == ver.size()) {
int t = 0;
for(int j = 1 ; j <= tot ; ++j) {
t = inc(t,fpow(K,gcd(tot,j)));
}
t = mul(t,fpow(tot,MOD - 2));
ans = mul(ans,t);
}
else ans = mul(ans,C(tot + K - 1,K - 1));
}
else low[u] = min(low[v],low[u]);
}
}
}
}
void Solve() {
read(N);read(M);read(K);
int u,v;
for(int i = 1 ;i <= M ; ++i) {
read(u);read(v);add(u,v);add(v,u);
}
fac[0] = 1;
for(int i = 1 ; i <= 200; ++i) fac[i] = mul(fac[i - 1],i);
invfac[200] = fpow(fac[200],MOD - 2);
for(int i = 199 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
ans = 1;
for(int i = 1 ; i <= N ; ++i) {
if(!dfn[i]) Tarjan(i,0);
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}