脑补知识:佩尔方差
上面说的貌似很明白,最小的i,对应最小的解
然而我理解成,一个循环的解了,然后就是搞不对,后来,仔细看+手工推导发现了问题。i从0开始变量,知道第一个满足等式的解就是最小解。
问题转化为求根号n的连分数问题,分子就是x,分母就是y
要求的分子,分母,问题又转化为:根号n的连分数表示,对,求出其连分数表示就OK了
先求出a的序列是什么?
第64题,就是求a的序列的。
a求出来了,要求出分子分母的表达式。
第65题,就是已经知道了a的序列,求分子,当然也可以求分母的
分子,分母求出来了,在验证:X*X-D*Y*Y=1时候就是最小解
问题真是一环套一环的。
Python程序:
import time as time start = time.time() def getD(N):
x_max ,y_max= 0,0
D = 0
x,y = 0,0
for S in range(2,N+1):
x,y = resolve(S)
if x>x_max:
x_max ,y_max= x,y
D = S
return D,x_max,y_max def resolve(S):
m = 0
d = 1
a0 = int(S**0.5)
if a0*a0 == S :return -1,-1;
a= a0
li = [a]
x,y = 1,1
while x*x-S*y*y!=1:
m = d*a - m
d = (S - m*m)/d
a = int((a0 + m)/d)
li.append(a)
x = getX(li)
y = getY(li)
# print li
return x,y; def getX(li):
x0 = 1
x1 = li[0]
li = li[1:]
for l in li:
x = l * x1 + x0
x0 = x1
x1 = x
return x def getY(li):
y0 = 0
y1 = 1
li = li[1:]
for l in li:
y = l * y1 + y0
y0 = y1
y1 = y
return y if __name__ == '__main__': start = time.time()
N = 1000
D ,x_max,y_max= getD(N)
print "running time={0}seconds,D={1},x_max={2},y_max={3}".format(time.time()-start,D,x_max,y_max)
求的是最小解X的最大值时候的D,答案是661
然而:
x_max=16421658242965910275055840472270471049
y_max=638728478116949861246791167518480580
这个值好大的
附一:python程序:
from math import sqrt
from time import time def prefect_sqrt(n):
return int(sqrt(n))**2 == n def floor_root(n):
return int(sqrt(n)) def chakravals(n):
x_max = 0
for d in range(2,n+1):
if not prefect_sqrt(d):
p1 = floor_root(d)
q1 = 1
m1 = p1**2 - d
# print -p1,(-p1) % abs(m1),(-p1) % abs(m1)
if (-p1) % abs(m1) ==0:
x1 = abs(m1)
else:
x1 = (-p1) % abs(m1) while m1!=1:
p0 = p1
q0 = q1
m0 = m1
x0 = x1 p1 = (p0 * x0 +d *q0)/abs(m0)
q1 = (p0 + x0)/abs(m0) m1 = (x0**2 -d)/m0 if (-x0)%abs(m1) ==0:
x1 = abs(x0)
else:
x1 = (-x0)%abs(m1)
if p1>x_max:
x_max = p1
d_max = d
print "d= %04d x = %d"%(d_max,x_max)
print if __name__=='__main__':
start = time()
chakravals(1000)
end = time()
print "time elapse=%f"%(end - start)
Java程序:
这个跑的好慢的
package project61;
import java.math.*; public class P66
{
public static final int precision = 500;
public static void main( String args[] )
{
BigInteger Max = new BigInteger("0");
int ans = 0; outer: for (int D_i = 2; D_i <= 1000; D_i++)
{
BigDecimal D = new BigDecimal(D_i);
BigDecimal SD = calculation.Sqrt(D); BigDecimal SD_i = SD.setScale(0, BigDecimal.ROUND_FLOOR);
if (SD_i.multiply(SD_i).equals(D))
continue; int a[] = calculation.toContinuedFraction(SD, 100); for (int i = 1; i < 100; i++)
{
Fraction temp = new Fraction(a[i],1); for (int j = i - 1; j >= 0; j--)
temp = Fraction.Compute(a[j], temp); BigInteger y_2 = temp.denominator.multiply(temp.denominator);
BigInteger x_2 = temp.numerator.multiply(temp.numerator);
BigInteger result = x_2.subtract(y_2.multiply(D.toBigIntegerExact())).subtract(BigInteger.ONE); if (result.equals(BigInteger.ZERO))
{
if (temp.numerator.compareTo(Max) > 0)
{
Max = temp.numerator;
ans = D_i;
} continue outer;
} }
System.out.print("Warning!\n"); }
System.out.print(ans+"\n");
}
} class Fraction
{
public BigInteger numerator;
public BigInteger denominator; private Fraction()
{ }
public Fraction (int numerator, int denominator)
{
this.numerator = BigInteger.valueOf(numerator);
this.denominator = BigInteger.valueOf(denominator);
}
public static Fraction Compute(int p1, Fraction p2)
{
Fraction ans = new Fraction();
ans.numerator = p2.denominator.add(p2.numerator.multiply(BigInteger.valueOf(p1)));
ans.denominator = p2.numerator.add(BigInteger.ZERO);
return ans;
}
} class calculation
{
private static final BigDecimal N0 = new BigDecimal(0);
private static final BigDecimal N1 = new BigDecimal(1);
private static final BigDecimal N2 = new BigDecimal(2); public static BigDecimal Sqrt(BigDecimal In)
{
BigDecimal N = new BigDecimal(1);
while(true)
{
BigDecimal NN = N.multiply(N);
NN = NN.add(In);
NN = NN.divide(N2);
NN = NN.divide(N, P66.precision, BigDecimal.ROUND_FLOOR); if (NN.equals(N))
break; N = NN;
} return N;
}
public static int[] toContinuedFraction(BigDecimal In, int l)
{
int ans[] = new int[l]; BigDecimal temp = In.add(N0);
for (int i = 0; i < l; i++)
{
ans[i] = Integer.valueOf(temp.setScale(0, BigDecimal.ROUND_FLOOR).toString()).intValue();
temp = temp.subtract(temp.setScale(0, BigDecimal.ROUND_FLOOR));
temp = N1.divide(temp, P66.precision, BigDecimal.ROUND_FLOOR);
}
return ans;
}
}
最后两个程序在网上复制过来的