【bzoj1098】办公楼

题意

FGD开办了一家电话公司。他雇用了N个职员,给了每个职员一部手机。每个职员的手机里都存储有一些同事的电话号码。由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄,FGD决定将公司迁至一些新的办公楼。FGD希望职员被安置在尽量多的办公楼当中,这样对于每个职员来说都会有一个相对更好的工作环境。但是,为了联系方便起见,如果两个职员被安置在两个不同的办公楼之内,他们必须拥有彼此的电话号码。

\(2<=N<=100000,1<=M<=2000000\)

分析

要求块内任意,块外充满连边的最小划分数。

那就等价于补图上块内任意,块外无连边的最小划分数。

那么就等价于求补图的联通块个数。

对\(n=100000\)的稠密图来讲,

直接求联通块会炸。

所以要利用到\(M\leq 2000000\)的特性。

我最初的想法是:我们可以枚举任意一对的\((i,j)\),若它们在原图中不存在连边,那么用并查集把它们合并。

由于这是一幅稠密图,所以\((i,j)\)有很大的概率存在连边,所以我们对于每个点\(i\),不需要枚举所有的\(j\),只需要随机枚举\(T\)个,然后尝试连边即可。

然而WA了......

接下来说的是正解。

求连通块的方法常有搜索或者并查集。

并查集看似不行,我们考虑搜索的过程,并根据\(M\leq 2000000\)的特性优化。

BFS:对于一个点\(i\),找与它连通的所有点\(j\),再找与\(j\)连通的所有点\(k\)......

把所有找到的点删去,ans++。

普通的实现上,最大的瓶颈在于已经删除的点我们还反复枚举了......

那么我们就不反复枚举好了,直接使用双向链表来删点,复杂度就优化到了\(O(n)\),因为最多有\(2M\)次失败。

还看到一种更精彩的代替双向链表的做法。

就是直接使用并查集代替双向链表。

代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#include <vector>
using namespace std;

#define rep(i,a,b) for (int i=(a);i<=(b);i++)

const int N=131072;

int n,m;
vector<int> g[N];

int vis[N],f[N];
int cnt[N],len;
int hsn[N],q[N],qh,qt;

int rd(void) {
    int x=0,f=1; char c=getchar();
    for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x*f;
}

int Find(int x) {
    if (f[x]==x) return x;
    return f[x]=Find(f[x]);
}

void Erase(int st) {
    qh=qt=0; q[++qt]=st; vis[st]=1;
    cnt[len]++;
    f[st]=Find(st+1);
    while (qh!=qt) {
        int x=q[++qh];
        rep(i,1,g[x].size()) {
            int nx=g[x][i-1];
            hsn[nx]=1;
        }
        int nx=Find(1);
        while (nx!=n+1) {
            if (!hsn[nx]) {
                q[++qt]=nx; vis[nx]=1; cnt[len]++;
                f[nx]=Find(nx+1);
            }
            nx=Find(nx+1);
        }
        rep(i,1,g[x].size()) {
            int nx=g[x][i-1];
            hsn[nx]=0;
        }
    }
}

int main(void) {
    #ifndef ONLINE_JUDGE
    freopen("sd.in","r",stdin);
    freopen("sd.out","w",stdout);
    #endif

    n=rd(),m=rd();
    rep(i,1,m) {
        int x=rd(),y=rd();
        g[x].push_back(y),g[y].push_back(x);
    }

    rep(i,1,n+1) f[i]=i;
    rep(i,1,n) if (!vis[i]) {
        len++;
        Erase(i);
    }

    sort(cnt+1,cnt+len+1);
    printf("%d\n",len);
    rep(i,1,len)
        printf("%d ",cnt[i]);
    printf("\n");

    return 0;
}

小结

(1)并查集可以代替双向链表,且实现更容易。

(2)外界充满边=补图外界无边,注意充满边的转化方法,最大团也是充满边的一种体现形式。

(3)连通块个数的统计,通常使用并查集或者搜索实现。

05-02 04:56