1.KL散度

KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度。对于两个概率分布P、Q,二者越相似,KL散度越小。

KL散度的性质:P表示真实分布,Q表示P的拟合分布

  1. 非负性:KL(P||Q)>=0,当P=Q时,KL(P||Q)=0;
  2. 反身性:KL(P||P)=0
  3. 非对称性:D(P||Q) ≠ D(Q||P)
  4. KL散度不满足三角不等

KL散度与JS散度-LMLPHP

python 代码实现:

from scipy import stats

P = [0.2, 0.4, 0.4]
Q = [0.4, 0.2, 0.5]
print(stats.entropy(P,Q))

0.1446821953906301

KL散度很容易梯度消失,KL 散度假设这两个分布共享相同的支撑集(也就是说,它们被定义在同一个点集上)。如果2个分布相聚太远或者2个分布之间没有重叠,计算出来的值为无穷大。

2.JS散度

  • JS散度的取值范围在0-1之间,完全相同时为0
  • JS散度是对称的

KL散度与JS散度-LMLPHP

from scipy import stats
import numpy as np
P =np.asarray( [[0.00934234 , 2.1068802],[0.01882005 , 2.03656788],[ 0.25182744 , 2.14507649]]) Q = np.asarray([[ 0.34670991, -0.24534987],[ 0.93025953 ,-0.69697827],[ 0.47976121, -0.33842087]])
M = (P+Q)/2
print(0.5*stats.entropy(P, M)+0.5*stats.entropy(Q, M))
05-11 16:15