题目大意:给你一个N*N的矩阵, 里面有K个星球, 我们可以让武器攻击矩阵的一行或者一列来使得这个星球被击碎, 现在问你最少需要几个这种武器才能把所有的星球击碎?
解题思路:关键是建模构图
把每一行当成一个行节点(也当成一把武器,因为一把武器可以消灭一行),构成集合1,每一列当成一个列节点(也当成一把武器,因为一把武器可以消灭一列),构成集合2,则共有2*N(N个行节点,N个列节点,即2*N把武器)节点。若某行某列有一个障碍物,则该行节点和该列节点之间构成一条边。每一个障碍物的位置坐标将集合1与集合2中的点连接起来,也就是将每一个障碍物作为连接节点的边。假设1个行节点覆盖了5个列节点,即这个行节点与这5个列节点间有5条边(即五个障碍物),由于这5条边都被那个行节点覆盖,即表明这5个障碍物都在同一行上,于是可以一把武器全部清除。这样可以轻易的得出本题是一个最小点覆盖的问题。又有一个定理是:最小点覆盖数 = 最大匹配数,所以此题转化成求最大匹配数,有几把武器匹配成功,即需要射击几次,匹配成功的武器越多,射击的次数也就越少。
#include<iostream>
#include<cstring>
using namespace std;
bool vis[];
int n,k,x,y;
int graph[][],link[];
bool Find(int x)
{
for(int i=;i<=n;i++){
if(graph[x][i]&&!vis[i]){
vis[i]=;//为了下一条语句中调用find做准备的,以免重复
if(!link[i]||Find(link[i])){
link[i]=x;
return true;
}
}
}
return false;
} int main()
{
memset(link,,sizeof(link));
memset(graph,,sizeof(graph));
cin>>n>>k;
for(int i=;i<=k;i++){
cin>>x>>y;
graph[x][y]=;
}
int ans=;
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(Find(i))
ans++;
}
cout<<ans<<endl;
}