链接

将边长向内推进r,明显这样把第一个圆的圆心放在新的边长是肯定是最优的,与原本边相切,然后再找新多边上的最远的两点即为两圆心。

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 2010
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
const int MAXN=;
int m;
double r;
int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
};
typedef point pointt;
pointt operator -(point a,point b)
{
return point(a.x-b.x,a.y-b.y);
}
point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点
void getline(point x,point y,double &a,double &b,double &c) //两点x、y确定一条直线a、b、c为其系数
{
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
}
void initial()
{
for(int i = ; i <= m; ++i)p[i] = points[i];
p[m+] = p[];
p[] = p[m];
cCnt = m;//cCnt为最终切割得到的多边形的顶点数,将其初始化为多边形的顶点的个数
}
point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点
{
double u = fabs(a * x.x + b * x.y + c);
double v = fabs(a * y.x + b * y.y + c);
point pt;
pt.x=(x.x * v + y.x * u) / (u + v);
pt.y=(x.y * v + y.y * u) / (u + v);
return pt;
}
void cut(double a,double b ,double c)
{
curCnt = ;
for(int i = ; i <= cCnt; ++i)
{
if(a*p[i].x + b*p[i].y + c >= )q[++curCnt] = p[i];// c由于精度问题,可能会偏小,所以有些点本应在右侧而没在,
//故应该接着判断
else
{
if(a*p[i-].x + b*p[i-].y + c > ) //如果p[i-1]在直线的右侧的话,
{
//则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这样的话,由于精度的问题,核的面积可能会有所减少)
q[++curCnt] = intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x + b*p[i+].y + c > ) //原理同上
{
q[++curCnt] = intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i = ; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中
p[curCnt+] = q[];
p[] = p[curCnt];
cCnt = curCnt;
}
double dis(point a)
{
return sqrt(a.x*a.x+a.y*a.y);
}
void solve(int r)
{
//注意:默认点是顺时针,如果题目不是顺时针,规整化方向
initial();
for(int i = ; i <= m; ++i)
{
point ta, tb, tt;
tt.x = points[i+].y - points[i].y;
tt.y = points[i].x - points[i+].x;
double k = r*1.0 / sqrt(tt.x * tt.x + tt.y * tt.y);
tt.x = tt.x * k;
tt.y = tt.y * k;
ta.x = points[i].x + tt.x;
ta.y = points[i].y + tt.y;
tb.x = points[i+].x + tt.x;
tb.y = points[i+].y + tt.y;
double a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}
double ans = -;
point p1, p2;
int i,j;
for(i = ; i <= curCnt ; i++)
for(j = i ; j<=curCnt ; j++)
{
if(ans<dis(p[i]-p[j]))
{
ans = dis(p[i]-p[j]);
p1 = p[i];
p2 = p[j];
}
}
printf("%.4f %.4f %.4f %.4f\n",p1.x,p1.y,p2.x,p2.y);
}
/*void GuiZhengHua(){
//规整化方向,逆时针变顺时针,顺时针变逆时针
for(int i = 1; i < (m+1)/2; i ++)
swap(points[i], points[m-i]);
}*/
int main()
{
int r,i;
while(scanf("%d%d",&m,&r)!=EOF)
{
for(i = ; i <= m ; i++)
scanf("%lf%lf",&points[i].x,&points[i].y);
points[m+] = points[];
solve(r);
}
return ;
}
05-10 23:39