题目大意:给一张无向图,现在要去掉一些边,使图仍然连通,求不能去掉的边。
题目分析:就是求无向图的桥。
tarjan算法跑一遍,和无向图割点十分类似,这里要找low[v] > dfn[u]的边(u,v)便是割边,因为v是u的孩子,但是v无法访问到u的祖先,那么断开这条边原图必不连通,因此这是桥。这题会有平行边,平行边必定不是桥。所以dfs的时候要判断一下。
详情请见代码:
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 10005;
const int M = 500005;
int m,n,num,ansnum,dfns;
int head[N],ans[M],low[N],dfn[N];
bool vis[N];
struct node
{
int to,next,id;
}bridge[M<<1];
void build(int s,int e,int id)
{
bridge[num].id = id;
bridge[num].to = e;
bridge[num].next = head[s];
head[s] = num ++;
}
void dfs(int cur,int fa)
{
vis[cur] = true;
int chongbian = 0;
dfn[cur] = low[cur] = dfns ++;
for(int i = head[cur];i != -1;i = bridge[i].next)
{
if(fa == bridge[i].to)
chongbian ++;
if(vis[bridge[i].to] == false)
{
dfs(bridge[i].to,cur);
low[cur] = min(low[cur],low[bridge[i].to]);
if(low[bridge[i].to] > dfn[cur])
ans[ansnum ++] = bridge[i].id;
}
else if(fa != bridge[i].to || chongbian > 1)
low[cur] = min(low[cur],dfn[bridge[i].to]);
}
}
void tarjan()
{
int i;
dfns = 1;
memset(vis,false,sizeof(vis));
memset(dfn,0,sizeof(dfn));
for(i = 1;i <= n;i ++)
if(vis[i] == false)
dfs(i,-1);
printf("%d\n",ansnum);
sort(ans,ans + ansnum);
for(i = 0;i < ansnum;i ++)
printf(i == ansnum - 1?"%d\n":"%d ",ans[i]);
}
int main()
{
int t,i;
int a,b;
scanf("%d",&t);
while(t --)
{
scanf("%d%d",&n,&m);
memset(head,-1,sizeof(head));
num = ansnum = 0;
for(i = 1;i <= m;i ++)
{
scanf("%d%d",&a,&b);
build(a,b,i);
build(b,a,i);
}
tarjan();
if(t)
puts("");
}
return 0;
}