题意抽象为:

给一个无向图和一些询问

对于每一次询问:

每次询问都会在图上增加一条边

对于每一次询问输出此时图上桥的个数。

桥的定义:删除该边后原图变为多个连通块。

数据规模:点数N(1 ≤ N ≤ 100,000) ,边数M(N - 1 ≤ M ≤ 200,000),询问数Q ( 1 ≤ Q ≤ 1,000)

先跑一遍tarjan,对边双连通分枝缩一下点。

再维护lca即可。

AC代码:

#include<cstdio>
#include<cstring>
#include<queue>
#define rep(i,a,b) for(int i=a;i<=b;++i)
using namespace std;
const int MAXV=;
const int MAXE=;
int DFN[MAXV],low[MAXV],par[MAXV],label[MAXV];
int pointer[MAXV];
int tot,cnt,m,n,Bcnt,ans;
vector<int> graph[MAXV];
struct Edge
{
int to,next;
bool vis;
Edge() {}
Edge(int b,int nxt,int flag) {to=b,next=nxt,vis=flag;}
}edge[MAXE];
inline void addedge(int a,int b)
{
edge[tot]=Edge(b,pointer[a],);
pointer[a]=tot++;
edge[tot]=Edge(a,pointer[b],);
pointer[b]=tot++;
}
void init()
{
tot=;
cnt=;Bcnt=;
memset(pointer,-,sizeof(pointer));
memset(label,,sizeof(label));
memset(DFN,,sizeof(DFN));
}
void tarjan(int u,int pre)
{
DFN[u]=low[u]=++cnt;
for(int j=pointer[u];j!=-;j=edge[j].next)
{
int v=edge[j].to;
if(edge[j].vis) continue;
edge[j].vis=edge[j^].vis=;
if(!DFN[v])
{
par[v]=j;
tarjan(v,u);
if(low[v]<low[u]) low[u]=low[v];
}
else if(low[u]>DFN[v]) low[u]=DFN[v];
}
}
void part(int u)
{
label[u]=Bcnt;
for(int j=pointer[u];j!=-;j=edge[j].next)
{
int v=edge[j].to;
if(!label[v]&&edge[j].vis) part(v);
}
}
int dep[MAXV];
int father[MAXV],a[MAXV];
void lca_bfs(int S)
{
rep(i,,Bcnt) dep[i]=-;
queue<int>q;
dep[S]=;
q.push(S);
father[S]=S;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=;i<graph[u].size();++i)
{
int v=graph[u][i];
if(dep[v]==-)
{
dep[v]=dep[u]+;
a[v]=;
father[v]=u;
q.push(v);
}
}
}
}
void lca(int u,int v)
{
if(dep[u]>dep[v]) swap(u,v);
while(dep[u]<dep[v])
{
if(a[v])
{
ans--;
a[v]=;
}
v=father[v];
}
while(u!=v)
{
if(a[v])
{
ans--;
a[v]=;
}
v=father[v];
if(a[u])
{
ans--;
a[u]=;
}
u=father[u];
}
}
int main()
{
// freopen("in.txt","r",stdin);
int icase=;
while(scanf("%d%d",&n,&m)&&m&&n)
{
int a,b;
init();
rep(i,,m)
{
scanf("%d%d",&a,&b);
addedge(a,b);
}
tarjan(,);
int tmp,u;
rep(i,,n)
{
tmp=par[i]^;
u=edge[tmp].to;
if(DFN[u]<low[i])
{
edge[tmp].vis=edge[tmp^].vis=;
}
}
rep(i,,n)
{
if(!label[i])
{
Bcnt++;
part(i);
}
}
ans=Bcnt-;
rep(i,,n)
{
if(!edge[par[i]].vis)
{
tmp=par[i]^;
u=edge[tmp].to;
graph[label[u]].push_back(label[i]);
graph[label[i]].push_back(label[u]);
}
}
lca_bfs();
int v,q;
scanf("%d",&q);
printf("Case %d:\n",++icase);
rep(i,,q)
{
scanf("%d%d",&u,&v);
lca(label[u],label[v]);
printf("%d\n",ans);
}
printf("\n"); }
return ;
}
05-07 15:33