Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

解题思路:

首先,确定一下什么样的数字中没有不吉利数字。

1.这个数字的前缀不是不吉利数字(废话)

2.这个数字中间不包含不吉利数字(废话)

3.这个数字的后缀不是不吉利数字(废话)

那么,这个数字如果是像汉堡那样一层一层堆的话,我们可以通过尽可能阻止不吉利数字出现来完成任务。

假设数字串出现到了第 i 位,只要后缀m-1位不是不吉利数字m-1位就可以。

所以设f[i][j]为数字堆积到 i 而匹配出来了 j 位。

那么 :

BZOJ1009: [HNOI2008]GT考试(KMP+矩阵乘法)-LMLPHP

a[k][j]为预处理出来的结果,其概念为:

原串中匹配到 j 时 k 位是否可以被枚举,由于做到不重不漏地计数,每次取前一个next即可

最后由于运算简单但递推长度大,使用矩阵乘法即可。

代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long lnt;
int n,m;
lnt K;
char num[];
int nxt[];
struct squ{
lnt s[][];
squ friend operator * (squ x,squ y)
{
squ ans;
for(int i=;i<m;i++)
{
for(int j=;j<m;j++)
{
ans.s[i][j]=;
for(int k=;k<m;k++)
{
ans.s[i][j]=(ans.s[i][j]+x.s[i][k]*y.s[k][j])%K;
}
}
}
return ans;
}
squ friend operator ^ (squ x,lnt y)
{
squ ans=x;
y--;
while(y)
{
if(y&)
ans=ans*x;
x=x*x;
y=y/;
}
return ans;
}
}f,g;
int main()
{
scanf("%d%d%lld",&n,&m,&K);
scanf("%s",num+);
nxt[]=nxt[]=;
for(int i=,j=;i<=m;i++)
{
while(j&&num[i]!=num[j+])
j=nxt[j];
if(num[i]==num[j+])
j++;
nxt[i]=j;
}
for(int k=;k<m;k++)
{
for(int j=;j<;j++)
{
int i=k;
while(i&&num[i+]!=j+'')
i=nxt[i];
if(num[i+]==j+'')
i++;
if(i!=m)
g.s[i][k]=(g.s[i][k]+)%K;
}
}
f=g^n;
lnt ans=;
for(int i=;i<m;i++)
{
ans=(ans+f.s[i][])%K;
}
printf("%lld\n",ans);
return ;
}
05-11 21:54