某个地方政府想修建一些高速公路使他们每个乡镇都可以相同通达,不过以前已经修建过一些公路,现在要实现所有的联通,所花费的最小代价是多少?(也就是最小的修建长度),输出的是需要修的路,不过如果不需要修建就什么都不输出。
分析:构建一个完全图,使用krusal进行一些简单优化不知道可以不,试一下吧
已经T成狗了
下面是TLE的krusal代码
******************************************************************************
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std; #define maxn 1005 int f[maxn];
struct node{
int u, v;double len;
friend bool operator < (node a, node b){
return a.len > b.len;
}
};
struct point{int x, y;}p[maxn], ans[maxn];
double Len(point a, point b){
int x = a.x-b.x;
int y = a.y-b.y; return sqrt(x*x+y*y);
}
int Find(int x)
{
if(f[x] != x)
f[x] = Find(f[x]);
return f[x];
}
int Union(int x, int y)
{
x = Find(x);
y = Find(y); if(x != y)
{
f[x] = y;
return 1;
} return 0;
}
bool cmp(point a, point b)
{
if(a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
int main()
{
int N; scanf("%d", &N); int M, u, v, t=0, k=0;
node s;
priority_queue<node> Q; for(s.u=1; s.u<=N; s.u++)
{
f[s.u] = s.u;
scanf("%d%d", &p[s.u].x, &p[s.u].y);
for(s.v=1; s.v<s.u; s.v++)
{
s.len = Len(p[s.u], p[s.v]);
Q.push(s);
}
} scanf("%d", &M); while(M--)
{
scanf("%d%d", &u, &v);
t += Union(u, v);
} while(Q.size() && t < N)
{
s = Q.top();Q.pop(); if(Union(s.u, s.v) == 1)
{
t += 1;
ans[k].x = s.v;
ans[k++].y = s.u;
}
} for(int i=0; i<k; i++)
printf("%d %d\n", ans[i].x, ans[i].y); return 0;
}
****************************************************************************
下面换成prim试一下吧
终于A掉了,使用优先队列会造成超内存
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std; #define maxn 1005
#define oo 0xfffffff double G[maxn][maxn];
struct point{int x, y;}p[maxn], ans[maxn];
struct node{int v;double len;}dist[maxn];
double Len(point a, point b){
int x = a.x-b.x;
int y = a.y-b.y; return sqrt(x*x+y*y);
} void prim(int N)
{
int i, use[maxn] = {0, 1}; for(i=1; i<=N; i++)
dist[i].v = 1, dist[i].len = G[1][i]; for(i=1; i<N; i++)
{
int k=0;double Min = oo; for(int j=1; j<=N; j++)
{
if(!use[j] && Min > dist[j].len)
Min = dist[j].len, k = j;
} use[k] = true; for(int j=1; j<=N; j++)
{
if(!use[j] && k!=j && G[k][j] < dist[j].len)
dist[j].len = G[k][j], dist[j].v = k;
}
}
} int main()
{
int i, j, N, M, u, v; scanf("%d", &N); for(i=1; i<=N; i++)
scanf("%d%d", &p[i].x, &p[i].y); for(i=1; i<=N; i++)
for(j=1; j<i; j++)
{
G[j][i] = G[i][j] = Len(p[i], p[j]);
} scanf("%d", &M); while(M--)
{
scanf("%d%d", &u, &v);
G[u][v] = G[v][u] = -1;
} prim(N); for(int i=2; i<=N; i++)
{
if(dist[i].len > 0)
printf("%d %d\n", i, dist[i].v);
} return 0;
}