【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)

题面

BZOJ

洛谷

题解

设\(f[i]\)表示深度为\(i\)的\(n\)元树个数。然后我们每次加入一个根节点,然后枚举它的子树的深度乘起来就好了。但是这样不好做,我们设\(f[i]\)表示深度至多为\(i\)的\(n\)元树个数,那么显然,\(f[i]=f[i-1]^n+1\),加一的原因是存在只有一个根节点的情况。最终的答案直接容斥一下就变成了\(f[d]-f[d-1]\)。写个高精度就好了,反正位数不多,乘法直接暴力就行。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,d;
struct BigInt
{
int s[2000],ws;
void init(){memset(s,0,sizeof(s));s[ws=1]=0;}
void output(){for(int i=ws;i;--i)printf("%d",s[i]);puts("");}
}f[20],One;
BigInt operator+(BigInt a,BigInt b)
{
int ws=max(a.ws,b.ws);
for(int i=1;i<=ws;++i)a.s[i]+=b.s[i];
for(int i=1;i<=ws;++i)a.s[i+1]+=a.s[i]/10,a.s[i]%=10;
while(a.s[ws+1])++ws,a.s[ws+1]+=a.s[ws]/10,a.s[ws]%=10;
a.ws=ws;return a;
}
BigInt operator-(BigInt a,BigInt b)
{
int ws=a.ws;
for(int i=1;i<=b.ws;++i)a.s[i]-=b.s[i];
for(int i=1;i<=ws;++i)if(a.s[i]<0)a.s[i]+=10,a.s[i+1]-=1;
while(!a.s[ws])--ws;
a.ws=ws;return a;
}
BigInt operator*(BigInt a,BigInt b)
{
BigInt ret;int ws=a.ws+b.ws;ret.init();
for(int i=1;i<=a.ws;++i)
for(int j=1;j<=b.ws;++j)
ret.s[i+j-1]+=a.s[i]*b.s[j];
for(int i=1;i<=ws;++i)ret.s[i+1]+=ret.s[i]/10,ret.s[i]%=10;
while(!ret.s[ws])--ws;
ret.ws=ws;return ret;
}
BigInt fpow(BigInt a,int b)
{
BigInt s;s.init();s.s[1]=1;
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int main()
{
cin>>n>>d;f[0].init();f[0].s[1]=1;One.init();One.s[1]=1;
for(int i=1;i<=d;++i)f[i]=fpow(f[i-1],n)+One;
f[d]=f[d]-f[d-1];f[d].output();
return 0;
}
05-11 13:50