题目链接:BZOJ - 2178

题目分析

用Simpson积分,将圆按照 x 坐标分成连续的一些段,分别用 Simpson 求。

注意:1)Eps要设成 1e-13  2)要去掉被其他圆包含的圆。

代码

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; typedef double LF; const LF Eps = 1e-13; const int MaxN = 1000 + 5; int n, Lc, Rc, Top, Tot; LF Lx, Rx, Ans; inline LF gmin(LF a, LF b) {return a < b ? a : b;}
inline LF gmax(LF a, LF b) {return a > b ? a : b;}
inline LF Sqr(LF x) {return x * x;} struct Point
{
LF x, y;
Point() {}
Point(LF a, LF b)
{
x = a; y = b;
}
}; inline LF Dis(Point p1, Point p2)
{
return sqrt(Sqr(p1.x - p2.x) + Sqr(p1.y - p2.y));
} struct Circle
{
Point o;
LF r;
} C[MaxN], S[MaxN]; inline bool Cmp1(Circle c1, Circle c2)
{
return c1.r < c2.r;
} inline bool Cmp2(Circle c1, Circle c2)
{
return c1.o.x - c1.r < c2.o.x - c2.r;
} bool Del[MaxN]; struct Segment
{
LF l, r;
} Seg[MaxN]; inline bool Cmp3(Segment s1, Segment s2)
{
return s1.l < s2.l;
} inline LF f(LF x)
{
LF ret = 0.0, p, q, Hi;
Top = 0;
for (int i = Lc; i <= Rc; ++i)
{
if (x <= S[i].o.x - S[i].r || x >= S[i].o.x + S[i].r) continue;
Hi = sqrt(Sqr(S[i].r) - Sqr(S[i].o.x - x));
Seg[++Top].l = S[i].o.y - Hi; Seg[Top].r = S[i].o.y + Hi;
}
sort(Seg + 1, Seg + Top + 1, Cmp3);
for (int i = 1, j; i <= Top; ++i)
{
p = Seg[i].l; q = Seg[i].r;
for (j = i + 1; j <= Top; ++j)
{
if (Seg[j].l > q) break;
if (Seg[j].r > q) q = Seg[j].r;
}
ret += q - p; i = j - 1;
}
return ret;
} inline LF Simpson(LF l, LF r, LF fl, LF fmid, LF fr)
{
return (fl + 4.0 * fmid + fr) * (r - l) / 6.0;
} inline LF RSimpson(LF l, LF r, LF fl, LF fmid, LF fr)
{
LF mid, p, q, x, y, z;
mid = (l + r) / 2.0;
p = f((l + mid) / 2.0); q = f((mid + r) / 2.0);
x = Simpson(l, r, fl, fmid, fr);
y = Simpson(l, mid, fl, p, fmid);
z = Simpson(mid, r, fmid, q, fr);
if (fabs(x - y - z) < Eps) return y + z;
else return RSimpson(l, mid, fl, p, fmid) + RSimpson(mid, r, fmid, q, fr);
} int main()
{
scanf("%d", &n);
int a, b, c;
for (int i = 1; i <= n; ++i)
{
scanf("%d%d%d", &a, &b, &c);
C[i].o = Point((LF)a, (LF)b);
C[i].r = (LF)c;
}
sort(C + 1, C + n + 1, Cmp1);
memset(Del, 0, sizeof(Del));
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j)
if (Dis(C[i].o, C[j].o) <= C[j].r - C[i].r)
{
Del[i] = true;
break;
}
Tot = 0;
for (int i = 1; i <= n; ++i)
if (!Del[i]) S[++Tot] = C[i];
sort(S + 1, S + Tot + 1, Cmp2);
Ans = 0.0;
for (int i = 1, j; i <= Tot; ++i)
{
Lc = i; Rc = i; Lx = S[i].o.x - S[i].r; Rx = S[i].o.x + S[i].r;
for (j = i + 1; j <= Tot; ++j)
{
if (S[j].o.x - S[j].r > Rx) break;
if (S[j].o.x + S[j].r > Rx) Rx = S[j].o.x + S[j].r;
}
Rc = j - 1; i = j - 1;
Ans += RSimpson(Lx, Rx, f(Lx), f((Lx + Rx) / 2.0), f(Rx));
}
printf("%.3lf\n", Ans);
return 0;
}

  

04-25 13:46