传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2002
这一题除了LCT解法,还有一种更巧妙,代码量更少的解法,就是分块。先想,如果仅仅记录每个节点需要几步可以弹飞,就可以做到O(1)查询O(n)修改;如果仅仅记录每个节点弹力洗漱,就可以做到O(n)查询O(1)修改。这会不会给人一种随机访问数组与链表的感觉呢?如果把n个弹簧分成√n块,记录块里每个弹簧需要几步才能跳出这一个块,并且记录跳出这个块后落到了哪,这样子查询以及修改复杂度都是O(√n)了。
#include <cstdio>
#include <cmath> const int maxn = 200005; int n, m, a[maxn], t1, t2, t3, siz, zuihou, kaishi, to[maxn], stp[maxn]; inline int qry(int pos) {
int rt = 0;
while (~pos) {
rt += stp[pos];
pos = to[pos];
}
return rt;
}
inline void upd(int pos, int data) {
kaishi = pos / siz * siz;
zuihou = (pos / siz + 1) * siz - 1;
a[pos] = data;
for (int i = pos; i >= kaishi; --i) {
if (i + a[i] >= n) {
to[i] = -1;
stp[i] = 1;
}
else if (i + a[i] > zuihou) {
to[i] = i + a[i];
stp[i] = 1;
}
else {
to[i] = to[i + a[i]];
stp[i] = stp[i + a[i]] + 1;
}
}
} int main(void) {
//freopen("in.txt", "r", stdin);
scanf("%d", &n);
siz = (int)sqrt((float)n + 0.5f);
for (int i = 0; i < n; ++i) {
scanf("%d", a + i);
}
for (int i = n - 1; ~i; --i) {
zuihou = (i / siz + 1) * siz - 1;
if (i + a[i] >= n) {
to[i] = -1;
stp[i] = 1;
}
else if (i + a[i] > zuihou) {
to[i] = i + a[i];
stp[i] = 1;
}
else {
to[i] = to[i + a[i]];
stp[i] = stp[i + a[i]] + 1;
}
}
scanf("%d", &m);
while (m--) {
scanf("%d%d", &t1, &t2);
if (t1 == 1) {
printf("%d\n", qry(t2));
}
else {
scanf("%d", &t3);
upd(t2, t3);
}
}
return 0;
}