Description:
在一个地区中有 n 个村庄,编号为 1, 2, ..., n。有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄。每条道路的长度均为 1 个单位。 为保证该地区的安全,巡警车每天要到所有的道路上巡逻。警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局。 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段。为了遍历所有的道路,巡警车需要走的距 离为 14 个单位,每条道路都需要经过两次。
为了减少总的巡逻距离,该地区准备在这些村庄之间建立 K 条新的道路, 每条新道路可以连接任意两个村庄。两条新道路可以在同一个村庄会合或结束 (见下面的图例(c))。 一条新道路甚至可以是一个环,即,其两端连接到同一 个村庄。 由于资金有限,K 只能是 1 或 2。同时,为了不浪费资金,每天巡警车必须 经过新建的道路正好一次。 下图给出了一些建立新道路的例子:
在(a)中,新建了一条道路,总的距离是 11。在(b)中,新建了两条道路,总 的巡逻距离是 10。在(c)中,新建了两条道路,但由于巡警车要经过每条新道路 正好一次,总的距离变为了 15。 试编写一个程序,读取村庄间道路的信息和需要新建的道路数,计算出最佳 的新建道路的方案使得总的巡逻距离最小,并输出这个最小的巡逻距离。
Input :
第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1 行,每行两个整数 a, b, 表示村庄 a 与 b 之间有一条道路(1 ≤ a, b ≤ n)。
Output:
输出一个整数,表示新建了 K 条道路后能达到的最小巡逻距离。
思路:K = 1时,求出树的直径L,然后把两端加一条边即可,答案就是2 * (n - 1) - L + 1
K = 2时,两个环的重叠部分会被巡逻两次,所以当求出直径L1的时候对直径上的边取反然后再求一遍直径L2就可以了(因为L2如果经过这个L1取反的部分,说明两个部分重叠,减掉L1之后重叠部分就只经过一次了,减掉(L2 - 1)相当于把重叠的部分加回来,变成“需要经过两次”),答案就是2 * (n - 1) - (L1 - 1)- (L2 - 1)
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + ; int head[N], now = ;
struct edges{
int to,next,w;
}edge[N<<];
void add(int u ,int v, int w){ edge[++now] = {v, head[u], w}; head[u] = now;} int n, k, dep[N], pre[N], pos1, pos2, d[N], L1, L2;
void dfs1(int x,int fa){
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(v == fa) continue;
dep[v] = dep[x] + edge[i].w;
dfs1(v, x);
}
if(dep[x] > dep[pos1])
pos1 = x;
}
void dfs2(int x,int fa){
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(v == fa) continue;
d[v] = d[x] + edge[i].w;
pre[v] = i;
dfs2(v, x);
}
if(d[x] > d[pos2])
pos2 = x;
}
void work(int x){
if(x == ) return ;
int tmp = pre[x];
edge[tmp].w = edge[tmp ^ ].w = -;
work(edge[tmp ^ ].to);
}
void dp(int x, int fa){
for(int i = head[x]; i; i = edge[i].next){
int v = edge[i].to;
if(v == fa) continue;
dp(v, x);
L2 = max(L2, d[x] + d[v] + edge[i].w);
d[x] = max(d[x], d[v] + edge[i].w);
}
}
int main(){
scanf("%d%d",&n, &k);
int x, y;
for(int i = ; i < n; i++){
scanf("%d%d",&x,&y);
add(x, y, ); add(y, x, );
}
dfs1(, -);
dfs2(pos1, -);
work(pos2);
L1 = d[pos2];
if(k == ){
printf("%d\n", * n - L1 - );
return ;
}
/* for(x = 1; x <= n; x++){
cout<<x<<": ";
for(int i = head[x]; i; i = edge[i].next)
cout<<edge[i].to<<" "<<"("<<edge[i].w<<") ";
cout<<endl;
}*/
memset(d,,sizeof(d));
dp(, -);
printf("%d\n", * n - L1 - L2);
return ;
}