题目链接:https://vjudge.net/problem/UVA-1364

题意:有n个人参加会议,互相憎恨的人不能坐在相邻的位置,并且每个会议参加的人数必须是奇数,求有多少个人不能参加任何一个会议。

思路:如果两个人可以坐在一起,则在他们之间建立一条无向边。求不在任何一个简单奇圈上面的点的个数。简单圈上面的点必然属于同一个点双联通分量,因此首先需要找出所有的点双联通分量、因为二分图是没有奇圈的,所以需要求那些不是二分图的点双联通分量。虽然这些点双联通分量一定含有奇圈,那么是否是所有的点都在奇圈上面呢。v属于点双联通分量B,但是不在属于B的奇圈C上面。根据点双联通的性质,v一定可以到达C中的一个结点u1,v也一定可以到达C中的入一个结点u2,在C中u1到u2的两条路的长度一奇一偶,总能构建出一个奇圈。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<stack>
#include<vector>
using namespace std;
const int MAXN=1e3+,INF=0x3f3f3f3f,MOD=1e9+;
int n,m;
int vis[MAXN][MAXN];
vector<int>G[MAXN];
int dfs_color=; ///dfs时间戳
int pre[MAXN],post[MAXN];
int bcc_cnt=; ///联通分量
int low[MAXN]; ///u及其后代所能连回的最早祖先的pre值
int iscut[MAXN]; ///割点
vector<pair<int,int> >birdge; ///桥
struct edge
{
int u,v;
};
stack<edge>S;
int bccno[MAXN]; ///点所在的双联通分量
vector<int>bcc[MAXN]; ///双联通分量
int dfs(int u,int fa)
{
int lowu=pre[u]=++dfs_color;
int child=;
for(int i=; i<G[u].size(); i++)
{
int v=G[u][i];
edge e=(edge)
{
u,v
};
if(!pre[v])
{
S.push(e);
child++;
int lowv=dfs(v,u);
lowu=min(lowu,lowv);
if(lowv>=pre[u])
{
iscut[u]=true;
if(lowv>pre[u]) birdge.push_back(make_pair(u,v));
bcc_cnt++;
bcc[bcc_cnt].clear();
while(!S.empty())
{
edge x=S.top();
S.pop();
if(bccno[x.u]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(x.u);
bccno[x.u]=bcc_cnt;
}
if(bccno[x.v]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(x.v);
bccno[x.v]=bcc_cnt;
}
if(x.u==u&&x.v==v) break;
}
}
}
else if(pre[v]<pre[u]&&v!=fa)
{
S.push(e);
lowu=min(lowu,pre[v]);
}
}
if(fa<&&child==) iscut[u]=;
low[u]=lowu;
return low[u];
}
void find_bcc()
{
bcc_cnt=;
dfs_color=;
memset(pre,,sizeof(pre));
memset(iscut,,sizeof(iscut));
memset(bccno,,sizeof(bccno));
for(int i=; i<=n; i++)
if(!pre[i]) dfs(i,-);
}
void init(int n,int m)
{
memset(vis,,sizeof(vis));
for(int i=; i<=n; i++) G[i].clear();
birdge.clear();
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
vis[u][v]=vis[v][u]=;
}
for(int i=; i<=n; i++)
{
for(int j=; j<i; j++)
{
if(vis[i][j]) continue;
G[i].push_back(j);
G[j].push_back(i);
}
}
}
int color[MAXN];
int odd[MAXN];
bool bipartite(int u,int d)
{
for (int i = ; i < G[u].size(); i++)
{ int v=G[u][i];
if (bccno[v]!=d) continue;
if (color[v]==color[u]) return false;
if (!color[v])
{
color[v]=-color[u];
if (!bipartite(v,d)) return false;
}
}
return true;
}
int solve()
{
memset(odd,,sizeof(odd));
for(int i=; i<=bcc_cnt; i++)
{
for(int j=;j<bcc[i].size();j++) bccno[bcc[i][j]]=i;
memset(color,,sizeof(color));
color[bcc[i][]]=;
if(!bipartite(bcc[i][],i))
{
for (int j=; j<bcc[i].size(); j++)
odd[bcc[i][j]]=;
}
}
int ans=;
for(int i=; i<=n; i++)
if(!odd[i]) ans++;
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m))
{
if(n==&&m==) break;
init(n,m);
find_bcc();
cout<<solve()<<endl;
}
return ;
}

无向图BCC+二部图

05-11 09:39