三大相关系数:pearson, spearman, kendall

统计学中的三大相关性系数:pearson, spearman, kendall,他们反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1。
0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。
1. person correlation coefficient(皮尔森相关性系数)
皮尔逊相关系数通常用r或ρ表示,度量两变量X和Y之间相互关系(线性相关)
(1)公式
皮尔森相关性系数的值等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。
(2)数据要求
a.正态分布
它是协方差与标准差的比值,并且在求皮尔森相关性系数以后,通常还会用t检验之类的方法来进行皮尔森相关性系数检验,而t检验是基于数据呈正态分布的假设的。
b.实验数据之间的差距不能太大
比如:研究人跑步的速度与心脏跳动的相关性,如果人突发心脏病,心跳为0(或者过快与过慢),那这时候我们会测到一个偏离正常值的心跳,如果我们把这个值也放进去进行相关性分析,它的存在会大大干扰计算的结果的。
(3)实例代码
import pandas as pd
import numpy as np #原始数据
X1=pd.Series([1, 2, 3, 4, 5, 6])
Y1=pd.Series([0.3, 0.9, 2.7, 2, 3.5, 5]) X1.mean() #平均值# 3.5
Y1.mean() #2.4
X1.var() #方差#3.5
Y1.var() #2.9760000000000004 X1.std() #标准差不能为0# 1.8708286933869707
Y1.std() #标准差不能为0#1.725108692227826
X1.cov(Y1) #协方差#3.0600000000000005 X1.corr(Y1,method="pearson") #皮尔森相关性系数 #0.948136664010285
X1.cov(Y1)/(X1.std()*Y1.std()) #皮尔森相关性系数 # 0.948136664010285
2. spearman correlation coefficient(斯皮尔曼相关性系数)
斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数。“秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解
(1)公式
首先对两个变量(X, Y)的数据进行排序,然后记下排序以后的位置(X’, Y’),(X’, Y’)的值就称为秩次,秩次的差值就是上面公式中的di,n就是变量中数据的个数,最后带入公式就可求解结果。
(2)数据要求
因为是定序,所以我们不用管X和Y这两个变量具体的值到底差了多少,只需要算一下它们每个值所处的排列位置的差值,就可以求出相关性系数了
(3)实例代码
import pandas as pd
import numpy as np #原始数据
X1=pd.Series([1, 2, 3, 4, 5, 6])
Y1=pd.Series([0.3, 0.9, 2.7, 2, 3.5, 5]) #处理数据删除Nan
x1=X1.dropna()
y1=Y1.dropna()
n=x1.count()
x1.index=np.arange(n)
y1.index=np.arange(n) #分部计算
d=(x1.sort_values().index-y1.sort_values().index)**2
dd=d.to_series().sum() p=1-n*dd/(n*(n**2-1)) #s.corr()函数计算
r=x1.corr(y1,method='spearman')
print(r,p) #0.942857142857143 0.9428571428571428

  3. kendall correlation coefficient(肯德尔相关性系数)

    肯德尔相关性系数,又称肯德尔秩相关系数,它也是一种秩相关系数,不过它所计算的对象是分类变量。
分类变量可以理解成有类别的变量,可以分为:
(1) 无序的,比如性别(男、女)、血型(A、B、O、AB);
(2) 有序的,比如肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)。
通常需要求相关性系数的都是有序分类变量。

(1)公式

R=(P-(n*(n-1)/2-P))/(n*(n-1)/2)=(4P/(n*(n-1)))-1
注:设有n个统计对象,每个对象有两个属性。将所有统计对象按属性1取值排列,不失一般性,设此时属性2取值的排列是乱序的。设P为两个属性值排列大小关系一致的统计对象对数
(2)数据要求
类别数据或者可以分类的数据
(3)实例代码
import pandas as pd
import numpy as np #原始数据
x= pd.Series([3,1,2,2,1,3])
y= pd.Series([1,2,3,2,1,1])
r = x.corr(y,method="kendall") #-0.2611165

  

05-11 21:51