#include <iostream>
#include <cstdio>
#include <algorithm>
#include <climits>
using namespace std;
const int N = 105;
const int MAX = 0xfffffff;
int edge[N][N];
int n, e;
int s[N];
bool vis[N];
void init()
{
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
edge[i][j] = -1;
}
}
for (int i = 0; i < n; ++i)
{
vis[i] = false;
s[i] = MAX;
}
} void dijkstra()
{
int p, te, tm;
s[0] = 0;
vis[0] = true;
p = 0;
for (int i = 0; i < n - 1; ++i)
{
for (int j = 0; j < n; ++j)
{
if (!vis[j] && edge[p][j] != -1 && s[p] + edge[p][j] < s[j])
{
s[j] = s[p] +edge[p][j];
}
}
tm = MAX;
for (int j = 0; j < n; ++j)
{
if (!vis[j] && s[j] < tm)
{
tm = s[j];
te = j;
}
}
vis[te] = true;
p = te;
}
} int change(char str[])
{
if (str[0] == 'x') return -1;
int ret = 0;
while (*str)
{
ret = ret * 10 + *str++ - '0';
}
return ret;
} int main()
{
char str[35];
int dis;
scanf("%d", &n);
init();
for (int i = 0; i < n; ++i)
{
edge[i][i] = 0;
for (int j = 0; j < i; ++j)
{
scanf("%s", str);
dis = change(str);
//cout<<*str<<" ";
edge[i][j] = edge[j][i] = dis;
}
}
dijkstra();
int MAX = 0;
for (int i = 1; i < n; ++i)
{
if (s[i] > MAX) MAX = s[i];
}
printf("%d\n", MAX);
return 0;
}
POJ1502
题意:求单源最短路径,不过中间需要处理下特殊字符的情况,输入是个坑
输入:
n(点集)
n-1行
邻接矩阵下三角,x字符另外处理
输出:
源点到所有点最短路径中最大的值
解题思路:
单源最短路径有很多算法可以求解,简单一点的就是dij(N^2),另外可以用bellman-ford算法求,相应SPFA是对bellman-ford队列的优化,具体优化操作则是在存取队列节点时,不断进行松弛操作,直至队列为空。
贴上算法与实现书上用SPFA实现的代码以及floyd算法
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <vector>
#include <math.h>
#include <queue>
#include <stdlib.h>
#define maxn 1000
#define INF 100000000
using namespace std;
vector < pair <int,int> > g[maxn+10];
char ch[10000],ans[100];
int node,edge,src;
int dis[maxn+10];
bool inQueue[maxn+10];
queue<int> que;
pair <int,int> suit;
void SPFA()
{
for (int i=0; i<=node; i++)
dis[i]=INF;
memset(inQueue,false,sizeof(int)*(node+5));
dis[src]=0;
while(!que.empty())
{
que.pop();
}
que.push(src);
inQueue[src]=true;
while(!que.empty())
{
int u=que.front();
que.pop();
for(int i=0; i!=g[u].size(); i++)
{
if ( dis[u] + g[u][i].second <dis[g[u][i].first] )
{
dis[g[u][i].first] = dis[u] + g[u][i].second;
if (!inQueue[g[u][i].first])
{
inQueue[g[u][i].first] = true;
que.push(g[u][i].first);
}
}
}
inQueue[u]=false;
}
}
int main()
{
while( scanf("%d",&node)!=EOF )
{
getchar();
for(int i=2; i<=node; i++)
{
gets(ch);
int add,ji=1;
char *p=ch;
while(sscanf(p,"%s%n",ans,&add)!=EOF)
{
if(ans[0]=='x')
{
ji++;
p=p+add;
continue;
}
suit.second=atoi(ans);
suit.first=ji;
g[i].push_back(suit);
suit.first=i;
g[ji].push_back(suit);
p=p+add;
ji++;
}
}
src=1;
SPFA();
int max=-1;
for(int i=1; i<=node; i++)
{
if( max < dis[i] )
max=dis[i];
}
printf("%d\n",max);
}
return 0;
}
void floyd()
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
}