斐波那契数列问题:如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第三个月里,又能开始生1对小兔子,假定在不发生死亡的情况下,由一对初生的兔子开始,1年后能繁殖出多少对兔子?
首先手工计算来总结规律,如下表
注意总数这一列
1+1=2
1+2=3
2+3=5
3+5=8
5+8=13
可以得出规律,第n个斐波那契数=第n-1个斐波那契数+第n-2个斐波那契数
为了计算n,必须计算n-1和n-2;为了计算n-1,必须计算n-2和n-3;直到n-x的值为1为止,这显示是递归大显身手的地方。来看代码
- public class Fibonacci {
- public static long calc(long n) {
- if(n < 0) {
- return 0;
- }
- if(n == 0 || n == 1) {
- return n;
- } else {
- return calc(n - 1) + calc(n - 2);
- }
- }
- }
这真是极短的,测试代码
- public static void main(String[] args) {
- long n = 50;
- long begin = System.nanoTime();
- long f = Fibonacci.calc(n);
- long end = System.nanoTime();
- System.out.println("第" + n + "个斐波那契数是" + f + ", 耗时" + TimeUnit.NANOSECONDS.toMillis(end - begin) + "毫秒");
- }
运行输出
- 第50个斐波那契数是12586269025, 耗时66024毫秒
注意看消耗的时间,在我的电脑上耗时66秒,真是个相当耗时的操作。既然整个过程都是在不断重复相同的计算规则,那我们可以采用分而治之的思想来优化代码。
- import java.util.concurrent.ForkJoinPool;
- import java.util.concurrent.RecursiveTask;
- import java.util.concurrent.TimeUnit;
- public class Fibonacci extends RecursiveTask<Long> {
- long n;
- public Fibonacci(long n) {
- this.n = n;
- }
- public Long compute() {
- if(n <= 10) { //小于10不再分解
- return Fibonacci.calc(n);
- }
- Fibonacci f1 = new Fibonacci(n - 1); //分解出计算n-1斐波那契数的子任务
- f1.fork(); //由ForkJoinPool分配线程执行子任务
- Fibonacci f2 = new Fibonacci(n - 2); //分解出计算n-2斐波那契数的子任务
- return f2.compute() + f1.join();
- }
- public static long calc(long n) {
- if(n < 0) {
- return 0;
- }
- if(n == 0 || n == 1) {
- return n;
- } else {
- return calc(n - 1) + calc(n - 2);
- }
- }
- public static void main(String[] args) {
- long n = 50;
- long begin = System.nanoTime();
- Fibonacci fibonacci = new Fibonacci(n);
- ForkJoinPool pool = new ForkJoinPool();
- long f = pool.invoke(fibonacci);
- long end = System.nanoTime();
- System.out.println("第" + n + "个斐波那契数是" + f + ", 耗时" + TimeUnit.NANOSECONDS.toMillis(end - begin) + "毫秒");
- }
- }
运行输出
- 第50个斐波那契数是12586269025, 耗时20461毫秒
虽然时间缩短了2/3,但是仍然不理想。回头重新看计算方法,用递归方式虽然代码简短,但是存在很严重的重复计算,下面用非递归的方式改写,过程中每个数只计算一次。
- public static long calcWithoutRecursion(long n) {
- if(n < 0)
- return 0;
- if(n == 0 || n == 1) {
- return n;
- }
- long fib = 0;
- long fibOne = 1;
- long fibTwo = 1;
- for(long i = 2; i < n; i++) {
- fib = fibOne + fibTwo;
- fibTwo = fibOne;
- fibOne = fib;
- }
- return fib;
- }
测试
- 第50个斐波那契数是12586269025, 耗时0毫秒
斐波那契数的另一个经典题目是青蛙跳台阶问题:
一只青蛙一次可以条一级或两级台阶,求该青蛙跳上n级的台阶共有多少种跳法。
假设计算第n级台阶跳法的函数是f(n),当n>2时,第一步选择跳一级有X种跳法,第一步选择跳两级有Y种跳法,f(n)=X+Y。如何计算X呢,站在青蛙的位置考虑,面对的是一个全新的n-1级台阶,有f(n-1)种跳法,那么Y就是n-2级台阶的跳法,那么f(n)=f(n-1)+f(n-2),即斐波那契数列公式。