★★★   输入文件:two.in   输出文件:two.out   简单对比
                  时间限制:0.1 s   内存限制:32 MB

从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。
木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。

输入

输入的第一行为一个正整数n——树的个数(2≤n≤20 000)。树从山顶到山脚按照1,2……n标号。接下来n行,每行有两个正整数(用空格分开)。第i+1行含有:wi——第i棵树的重量(公斤为单位)和 di——第i棵树和第i+1棵树之间的距离,1≤wi ≤10 000,0≤di≤10 000。最后一个数dn,表示第n棵树到山脚的锯木厂的距离。保证所有树运到山脚的锯木厂所需要的费用小于2000 000 000分。

输出

输出只有一行一个数:最小的运输费用。

样例

输入

9
1 2
2 1
3 3
1 1
3 2
1 6
2 1
1 2
1 1

输出

26

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
typedef long long LL;
typedef double db;
const int maxn=;
LL ANS=1e15;
int N,w[maxn],d[maxn],Sw[maxn],Sd[maxn],cost[maxn];
int Q[maxn],head,tail=-;
inline double calc(int j1,int j2){
return ((db)Sw[j1]*(db)Sd[j1]-(db)Sw[j2]*(db)Sd[j2])/((db)Sw[j1]-(db)Sw[j2]);
}
inline int All(int j,int i){
return cost[i]-cost[j-]-Sw[j-]*(Sd[i]-Sd[j-]);
}
inline LL ask_ans(int j,int i){
return (LL)cost[j]+(LL)All(j+,i)+(LL)All(i+,N+);
}
int main(){
//freopen("two.in","r",stdin);
//freopen("two.out","w",stdout);
scanf("%d",&N);
for(int i=;i<=N;i++){
scanf("%d%d",&w[i],&d[i]);
Sw[i]=Sw[i-]+w[i];
Sd[i+]=Sd[i]+d[i];
cost[i]=cost[i-]+Sw[i-]*d[i-];
}
cost[N+]=cost[N]+Sw[N]*d[N];
Sw[N+]=Sw[N];
for(int i=;i<=N;i++){
while(head<tail&&calc(Q[head],Q[head+])<=Sd[i]){
head++;
}
ANS=min(ANS,ask_ans(Q[head],i));
while(head<tail&&calc(Q[tail-],Q[tail])>calc(Q[tail],i)){
tail--;
}
Q[++tail]=i;
}
printf("%lld",ANS);
return ;
}

  

05-11 17:15