链接:http://acm.hdu.edu.cn/showproblem.php?

pid=2196

题意:每一个电脑都用线连接到了还有一台电脑,连接用的线有一定的长度,最后把全部电脑连成了一棵树,问每台电脑和其它电脑的最远距离是多少。

思路:这是一道树形DP的经典题目。须要两次DFS,第一次DFS找到树上全部的节点在不同子树中的最远距离和次远的距离(在递归中进行动态规划就可以),第二次DFS从根向下更新出终于答案。对于每次更新到的节点u,他的最远距离可能是来自u的子树,或者是u的父亲节点的最远距离。假设u的父亲节点的最远距离是在第一次DFS过程中更新自u的话,那么u的最远距离就不能更新自u的父亲节点的最远节点,而是有可能更新自u的父亲节点的次远距离,这就是每次更新时要记录节点的次远距离的原因。

代码:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <ctype.h>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
#define eps 1e-8
#define INF 0x7fffffff
#define maxn 10005
#define PI acos(-1.0)
#define seed 31//131,1313
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
int dp[maxn][2],from[maxn],head[maxn],top;
void init()
{
memset(head,-1,sizeof(head));
memset(dp,0,sizeof(dp));
top=0;
}
struct Edge
{
int v,w;
int next;
} edge[maxn*2];
void add_edge(int u,int v,int w)
{
edge[top].v=v;
edge[top].w=w;
edge[top].next=head[u];
head[u]=top++;
}
void dfs_first(int u,int f)
{
from[u]=u;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v,w=edge[i].w;
if(v==f)
continue;
dfs_first(v,u);
if(dp[v][0]+w>dp[u][0])
{
from[u]=v;
dp[u][1]=dp[u][0];
dp[u][0]=dp[v][0]+w;
}
else if(dp[v][0]+w>dp[u][1])
dp[u][1]=dp[v][0]+w;
}
}
void dfs_second(int u,int f,int k)
{
if(u!=f)
if(from[f]!=u)
{
if(dp[f][0]+k>dp[u][0])
{
from[u]=f;
dp[u][1]=dp[u][0];
dp[u][0]=dp[f][0]+k;
}
else if(dp[f][0]+k>dp[u][1])
dp[u][1]=dp[f][0]+k;
}
else
{
if(dp[f][1]+k>dp[u][0])
{
from[u]=f;
dp[u][1]=dp[u][0];
dp[u][0]=dp[f][1]+k;
}
else if(dp[f][1]+k>dp[u][1])
dp[u][1]=dp[f][1]+k;
}
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v,w=edge[i].w;
if(v==f)
continue;
dfs_second(v,u,w);
}
}
int main()
{
int T,v,w;
while(~scanf("%d",&T))
{
init();
for(int i=2; i<=T; i++)
{
scanf("%d%d",&v,&w);
add_edge(v,i,w);
add_edge(i,v,w);
}
dfs_first(1,1);
dfs_second(1,1,0);
for(int i=1;i<=T;i++)
printf("%d\n",dp[i][0]);
}
return 0;
}
04-25 04:30