项目中用的是MongoDB,但是为什么用其实当时选型的时候也没有太多考虑,只是认为数据量比较大,所以采用MongoDB。
最近又想起为什么用MongoDB,就查阅一下,汇总汇总:
之前也用过redis,当时是用来存储一些热数据,量也不大,但是操作很频繁。现在项目中用的是MongoDB,目前是百万级的数据,将来会有千万级、亿级。
就Redis和MongoDB来说,大家一般称之为Redis缓存、MongoDB数据库。这也是有道有理有根据的,
Redis主要把数据存储在内存中,其“缓存”的性质远大于其“数据存储“的性质,其中数据的增删改查也只是像变量操作一样简单;
MongoDB却是一个“存储数据”的系统,增删改查可以添加很多条件,就像SQL数据库一样灵活,这一点在面试的时候很受用。
点击查看:MongoDB语法与现有关系型数据库SQL语法比较
Mongodb与Redis应用指标对比
MongoDB和Redis都是NoSQL,采用结构型数据存储。二者在使用场景中,存在一定的区别,这也主要由于
二者在内存映射的处理过程,持久化的处理方法不同。MongoDB建议集群部署,更多的考虑到集群方案,Redis
更偏重于进程顺序写入,虽然支持集群,也仅限于主-从模式。
指标 | MongoDB(v2.4.9) | Redis(v2.4.17) | 比较说明 |
---|---|---|---|
实现语言 | C++ | C/C++ | - |
协议 | BSON、自定义二进制 | 类Telnet | - |
性能 | 依赖内存,TPS较高 | 依赖内存,TPS非常高 | Redis优于MongoDB |
可操作性 | 丰富的数据表达、索引;最类似于关系数据库,支持丰富的查询语言 | 数据丰富,较少的IO | MongoDB优于Redis |
内存及存储 | 适合大数据量存储,依赖系统虚拟内存管理,采用镜像文件存储;内存占有率比较高,官方建议独立部署在64位系统(32位有最大2.5G文件限制,64位没有改限制) | Redis2.0后增加虚拟内存特性,突破物理内存限制;数据可以设置时效性,类似于memcache | 不同的应用角度看,各有优势 |
可用性 | 支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制 | 依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制;不支持自动sharding,需要依赖程序设定一致hash机制 | MongoDB优于Redis;单点问题上,MongoDB应用简单,相对用户透明,Redis比较复杂,需要客户端主动解决。(MongoDB 一般会使用replica sets和sharding功能结合,replica sets侧重高可用性及高可靠性,而sharding侧重于性能、易扩展) |
可靠性 | 从1.8版本后,采用binlog方式(MySQL同样采用该方式)支持持久化,增加可靠性 | 依赖快照进行持久化;AOF增强可靠性;增强可靠性的同时,影响访问性能 | MongoDB优于Redis |
一致性 | 不支持事物,靠客户端自身保证 | 支持事物,比较弱,仅能保证事物中的操作按顺序执行 | Redis优于MongoDB |
数据分析 | 内置数据分析功能(mapreduce) | 不支持 | MongoDB优于Redis |
应用场景 | 海量数据的访问效率提升 | 较小数据量的性能及运算 | MongoDB优于Redis |