http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1320
题意:……是舀的时候里面必须要有1L,而不是舀完必须要有1L。
思路:才知道是卡特兰数。
这个感觉写的很好 http://www.cnblogs.com/wuyuegb2312/p/3016878.html
卡特兰数可以解决:求括号匹配,出栈入栈等组合个数的问题。
卡特兰数公式:
first O(n): h(n) = h(n-1) * (4*n-2) / (n+1)
second O(n^2): h(n) = h(0)*h(n-1) + h(1)*h(n-2) …… + h(n-1)*h(0)
third 直接算的公式:h(2n) = C(n, 2n) / (n+1)
第一种计算要用到逆元
逆元: 费马小定理
a^(m-1) ≡ 1(mod m)
a * a^(m-2) ≡ 1(mod m)
a^(m-2) ≡ (1/a)(mod m)
#include <cstdio>
using namespace std;
typedef long long LL;
#define N 10010
#define MOD 1000000007
LL f[N];
/*
卡特兰数公式:
first O(n): h(n) = h(n-1) * (4*n-2) / (n+1)
second O(n^2): h(n) = h(0)*h(n-1) + h(1)*h(n-2) …… + h(n-1)*h(0)
逆元: 费马小定理
a^(m-1) ≡ 1(mod m)
a * a^(m-2) ≡ 1(mod m)
a^(m-2) ≡ (1/a)(mod m)
*/
LL q_pow(LL a, LL b) {
LL ans = ;
a %= MOD; b %= MOD;
while(b) {
if(b & ) ans = (ans * a) % MOD;
b >>= ;
a = (a * a) % MOD;
}
return ans;
}
// 快速乘(貌似鸡肋)
LL q_mul(LL a, LL b) {
LL ans = ;
a %= MOD;
while(b) {
if(b & ) {ans = (ans + a) % MOD; b--;}
b >>= ;
a = (a + a) % MOD;
}
return ans % MOD;
} void dabiao() {
f[] = f[] = 1LL;
for(int i = ; i <= ; i++) // first
f[i] = f[i-] * ( * i - ) % MOD * q_pow(i + , MOD - ) % MOD;
// for(int i = 2; i <= 10000; i++) second
// for(int j = 0; j < i; j++)
// f[i] = (f[i] + f[i-j-1] * f[j] % MOD) % MOD;
} int main() {
int n; dabiao();
while(~scanf("%d", &n)) printf("%lld\n", f[n] % MOD);
return ;
}