题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996
把题中的式子拆开看看,发现就是如下关系:
如果 a[i] == 1 && a[j] == 1,则 b[i][j] 有贡献;
如果 a[i] == 1,则 -c[i] 有贡献;
所以就是最大权闭合子图的模型,b[i][j] 向 a[i] 和 a[j] 连边,a[i] 向 c[i] 连边;
而 c[i] 这个点实际上没什么用,直接变成 a[i] 向 T 连边,边权是 c[i] 即可。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int const xn=,xm=(xn<<),inf=0x3f3f3f3f;
int n,hd[xn],ct,to[xm],nxt[xm],c[xm],S,T,dis[xn],cur[xn];
queue<int>q;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void ade(int x,int y,int z){to[++ct]=y; nxt[ct]=hd[x]; hd[x]=ct; c[ct]=z;}
void add(int x,int y,int z){ade(x,y,z); ade(y,x,);}
bool bfs()
{
while(q.size())q.pop();
memset(dis,,sizeof dis);
dis[]=; q.push();
while(q.size())
{
int x=q.front(); q.pop();
for(int i=hd[x],u;i;i=nxt[i])
if(!dis[u=to[i]]&&c[i])dis[u]=dis[x]+,q.push(u);
}
return dis[T];
}
int dfs(int x,int fl)
{
if(x==T)return fl;
int ret=;
for(int &i=cur[x],u;i;i=nxt[i])
{
if(dis[u=to[i]]!=dis[x]+||!c[i])continue;
int tmp=dfs(u,min(fl-ret,c[i]));
if(!tmp)dis[u]=;
c[i]-=tmp; c[i^]+=tmp;
ret+=tmp; if(ret==fl)break;
}
return ret;
}
int main()
{
n=rd(); S=; T=n*n+n+; int ans=;
for(int i=,cnt=;i<=n;i++)
for(int j=,x;j<=n;j++)
{
x=rd(); cnt++; ans+=x;
add(S,cnt,x);
add(cnt,n*n+i,inf); add(cnt,n*n+j,inf);
}
for(int i=,x;i<=n;i++)x=rd(),add(n*n+i,T,x);
while(bfs())
{
memcpy(cur,hd,sizeof hd);
ans-=dfs(S,inf);
}
printf("%d\n",ans);
return ;
}