BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
Description
设d(x)为x的约数个数,给定N、M,求
Input
输入文件包含多组测试数据。
第一行,一个整数T,表示测试数据的组数。
接下来的T行,每行两个整数N、M。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
2
7 4
5 6
7 4
5 6
Sample Output
110
121
121
HINT
1<=N, M<=50000
1<=T<=50000
基本同BZOJ4176,需要处理$f_n=\sum\limits_{i=1}n/i$,然后分块求。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 50050
using namespace std;
ll f[N];
int prime[8080],cnt,miu[N],s[N];
bool vis[N];
void init() {
int i,j;
miu[1]=s[1]=1;
for(i=2;i<=50000;i++) {
if(!vis[i]) {
prime[++cnt]=i;
miu[i]=-1;
}
for(j=1;j<=cnt&&i*prime[j]<=50000;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) {
miu[i*prime[j]]=0;
break;
}
miu[i*prime[j]]=-miu[i];
}
s[i]=s[i-1]+miu[i];
}
int lst;
for(i=1;i<=50000;i++) {
for(j=1;j<=i;j=lst+1) {
lst=i/(i/j); f[i]+=1ll*(lst-j+1)*(i/j);
}
}
}
ll calc(ll n,ll m) {
ll i,lst,r=min(n,m),ans=0;
for(i=1;i<=r;i=lst+1) {
lst=min(n/(n/i),m/(m/i));
ans+=(s[lst]-s[i-1])*f[n/i]*f[m/i];
}
return ans;
}
int main() {
init();
int T;
ll n,m;
scanf("%d",&T);
while(T--) {
scanf("%lld%lld",&n,&m);
printf("%lld\n",calc(n,m));
}
}