【BZOJ3123】[Sdoi2013]森林

Description

【BZOJ3123】[Sdoi2013]森林 主席树+倍增LCA+启发式合并-LMLPHP

Input

第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。 
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。 
 接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。

Output

对于每一个第一类操作,输出一个非负整数表示答案。

Sample Input

1
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3 Q 3 5 1
Q 10 0 0
L 5 4
L 3 2 L 0 7
Q 9 2 5 Q 6 1 6

Sample Output

2
2
1
4
2

HINT

对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。 
【BZOJ3123】[Sdoi2013]森林 主席树+倍增LCA+启发式合并-LMLPHP

题解:跟BZOJ2588差不多,只不过变成了森林,所以采用启发式合并,每次将小的树暴力重构,塞到大的树里就行了。

话说这题并不需要并查集,只需要记录一下每个点的树根和这棵树的大小就行了

RE的注意!:

1.testcase是测试点编号!好好读题!所以这东西没有卵用
2.每次重构的时候不要这样写

for(i=1;(1<<i)<n;i++)
fa[x][i]=fa[fa[x][i-1]][i-1];

因为原先x的深度可能比重构后的深度要大,所以以前的某些fa值在重构后并没有清掉,导致搜LCA时出错,进而WA->RE

所以必须这样写

for(i=1;i<20;i++)
fa[x][i]=fa[fa[x][i-1]][i-1];

这一个错误害我调了一个上午~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=80010;
int n,m,nm,cnt,T,tot,lastans;
int to[maxn<<1],next[maxn<<1],head[maxn],v[maxn],fa[maxn][20],dep[maxn],root[maxn],siz[maxn];
int Log[maxn],rt[maxn],ref[maxn];
struct sag
{
int siz,ls,rs;
}s[maxn*300];
struct node
{
int v,org;
}num[maxn];
char str[10];
bool cmp(node a,node b)
{
return a.v<b.v;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void insert(int x,int &y,int l,int r,int pos)
{
if(pos>r) return ;
y=++tot;
if(l==r)
{
s[y].siz=s[x].siz+1;
return ;
}
int mid=l+r>>1;
if(pos<=mid) s[y].rs=s[x].rs,insert(s[x].ls,s[y].ls,l,mid,pos);
else s[y].ls=s[x].ls,insert(s[x].rs,s[y].rs,mid+1,r,pos);
s[y].siz=s[s[y].ls].siz+s[s[y].rs].siz;
}
int query(int a,int b,int c,int d,int l,int r,int k)
{
if(l==r) return ref[l];
int mid=l+r>>1,sm=s[s[a].ls].siz+s[s[b].ls].siz-s[s[c].ls].siz-s[s[d].ls].siz;
if(sm>=k) return query(s[a].ls,s[b].ls,s[c].ls,s[d].ls,l,mid,k);
else return query(s[a].rs,s[b].rs,s[c].rs,s[d].rs,mid+1,r,k-sm);
}
void dfs(int x)
{
siz[root[x]]++;
int i;
for(i=1;i<20;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
insert(rt[fa[x][0]],rt[x],1,nm,v[x]);
for(i=head[x];i!=-1;i=next[i])
if(to[i]!=fa[x][0])
fa[to[i]][0]=x,dep[to[i]]=dep[x]+1,root[to[i]]=root[x],dfs(to[i]);
}
int main()
{
rd();
n=rd(),m=rd(),T=rd();
int i,j,a,b,c,d;
memset(head,-1,sizeof(head));
for(i=2;i<=n;i++) Log[i]=Log[i>>1]+1;
for(i=1;i<=n;i++) num[i].v=rd(),num[i].org=i;
sort(num+1,num+n+1,cmp);
for(ref[0]=-1,i=1;i<=n;i++)
{
if(num[i].v>ref[nm]) ref[++nm]=num[i].v;
v[num[i].org]=nm;
}
for(i=1;i<=m;i++) a=rd(),b=rd(),add(a,b),add(b,a);
for(i=1;i<=n;i++) if(!root[i]) root[i]=i,dfs(i);
for(i=1;i<=T;i++)
{
scanf("%s",str),a=rd()^lastans,b=rd()^lastans;
if(str[0]=='L')
{
if(siz[root[a]]>siz[root[b]]) swap(a,b);
fa[a][0]=b,dep[a]=dep[b]+1,root[a]=root[b],add(a,b),add(b,a),dfs(a);
}
else
{
c=a,d=b;
if(dep[a]<dep[b]) swap(a,b);
for(j=Log[dep[a]-dep[b]];j>=0;j--) if(dep[a]-(1<<j)>=dep[b]) a=fa[a][j];
if(a!=b)
{
for(j=Log[dep[a]];j>=0;j--)
if(fa[a][j]!=fa[b][j]) a=fa[a][j],b=fa[b][j];
a=fa[a][0];
}
b=rd()^lastans;
lastans=query(rt[c],rt[d],rt[a],rt[fa[a][0]],1,nm,b);
printf("%d\n",lastans);
}
}
return 0;
}
05-11 13:37