TopN的问题分为两种:一种是建是唯一的,还有是建非唯一。我们这边做的就是建是唯一的。

这里的建指得是:下面数据的第一列。

有一堆数据,想根据第一列找出里面的Top10.

如下:

03Hadoop的TopN的问题-LMLPHP

关键:在map和reduce阶段都使用了TreeMap这个数据结构,他有从小到大的排序功能,所以排第一的最小,依次增大。限定大小为10 ,只要超过十,就把排在第一个的值给删除。

代码如下:

package com.book.topn;

import java.io.IOException;
import java.util.Iterator;
import java.util.Set;
import java.util.SortedMap;
import java.util.TreeMap; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TopN { static class Mapper1 extends Mapper<LongWritable, Text, NullWritable, Text> {
public SortedMap<Double, Text> top10cats = new TreeMap<Double, Text>();
public int N = 10; @Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, NullWritable, Text>.Context context)
throws IOException, InterruptedException { String[] lines = value.toString().split(",");
Double weight = Double.parseDouble(lines[0]);
// 一行读完,然后把数据
top10cats.put(weight, new Text(value)); // 如果Map
if (top10cats.size() > N) {
top10cats.remove(top10cats.firstKey());
}
} // 待执行完map的读取比较操作后,就把TreeMap里面的数据打印出来。
@Override
protected void cleanup(Mapper<LongWritable, Text, NullWritable, Text>.Context context)
throws IOException, InterruptedException { Set<Double> set = top10cats.keySet(); Iterator<Double> iterator = set.iterator(); while (iterator.hasNext()) { context.write(NullWritable.get(), top10cats.get(iterator.next()));
} } } static class reduce1 extends Reducer<NullWritable, Text, NullWritable, Text> { SortedMap<Double, Text> finalTop = new TreeMap<Double, Text>();
private int N = 10; @Override
protected void reduce(NullWritable arg0, Iterable<Text> values,
Reducer<NullWritable, Text, NullWritable, Text>.Context context)
throws IOException, InterruptedException { for (Text value : values) { String[] finalresult = value.toString().split(","); finalTop.put(Double.parseDouble(finalresult[0]), new Text(value));
if (finalTop.size() > N) {
finalTop.remove(finalTop.firstKey());
}
; } Set<Double> set = finalTop.keySet(); Iterator<Double> iterator = set.iterator(); // 依次写入到文件中
while (iterator.hasNext()) { context.write(NullWritable.get(), finalTop.get(iterator.next()));
} } } public static void main(String[] args) throws Exception, IOException { Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(TopN.class); job.setMapperClass(Mapper1.class);
job.setReducerClass(reduce1.class); job.setMapOutputKeyClass(NullWritable.class);
job.setMapOutputValueClass(Text.class); job.setOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class); // 指定输入的数据的目录
FileInputFormat.setInputPaths(job, new Path("/Users/mac/Desktop/TopN.txt")); FileOutputFormat.setOutputPath(job, new Path("/Users/mac/Desktop/flowresort")); boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1); } }

结果:

03Hadoop的TopN的问题-LMLPHP

注意点:

03Hadoop的TopN的问题-LMLPHP

上面的注意点一定要切记。

04-24 14:16