问题描述
给定一棵树,树中每个结点权值为[-100,100]之间的整数。树中包含结点总数不超过1e5。任选两个非根节点A、B,将这两个结点与其父节点断开,可以得到三棵子树。现要求三棵子树的权值之和相等,问A、B有多少种选择方法。
输入
T:样例种数
N:树中结点个数
v1 father1
v2 father2
问题分析
此问题是一道树形DP。
如何才能将一棵树划分成三棵权值之和相等的子树?有两种情况:
- 若结点x和结点y没有血缘关系(不是祖孙关系),则x和y的权值之和都是s(s为整棵树的权值之和的三分之一),x和y把这棵树截为三段。
- 若结点x和结点y有血缘关系,不妨设x是y的祖先,则x的权值之和为2s,y的权值之和为s。x和y把这棵树截为三段。
最精简的代码
#include<iostream>
#include<stdio.h>
#include<iostream>
using namespace std;
const int maxn = 1e5 + 7;
typedef long long ll;
struct Node {
int v;
int s;
int son;
}a[maxn];
int nex[maxn];
int root;
int per;
int n;
ll ans;
int perCount = 0;
int go(int nodeId) {
int temp = perCount;
a[nodeId].s = a[nodeId].v;
for (int i = a[nodeId].son; i != -1; i = nex[i]) {
a[nodeId].s += go(i);
}
if (nodeId != root) {
if (a[nodeId].s == per * 2) {
ans += perCount - temp;
}
if (a[nodeId].s == per) {
ans += temp;
perCount++;
}
}
return a[nodeId].s;
}
void push(int parent, int son) {
int temp = a[parent].son;
nex[son] = temp;
a[parent].son = son;
}
int main() {
int T;
cin >> T;
while (T-- > 0) {
cin >> n;
for (int i = 0; i <= n; i++) {
a[i].son = -1;
nex[i] = -1;
}
int s = 0;
for (int i = 0; i < n; i++) {
int father;
cin >> a[i].v >> father;
s += a[i].v;
father--;
if (father == -1) {
root = i;
}
else {
push(father, i);
}
}
if (s % 3 == 0) {
per = s / 3;
ans = 0;
perCount = 0;
go(root);
cout << ans << endl;
}
else {
cout << 0 << endl;
}
}
return 0;
}
复杂但是直观的代码
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
const int maxn = 1e5 + 7;
typedef long long ll;
int n;
int per;//每个分支应该等于的数值
struct Node {
int v;//结点权重
int s;//结点所代表的子树的权重之和
int sonPerCount;//子树中权值之和为per的结点个数(包括自身)
int son;//儿子结点,链表第一个结点
int next;//下一个兄弟结点
}a[maxn];
void push(int father, int son) {
int temp = a[father].son;
a[son].next = temp;
a[father].son = son;
}
int root;
void init(int nodeId) {
a[nodeId].s = a[nodeId].v;
for (int i = a[nodeId].son; ~i; i = a[i].next) {
init(i);
a[nodeId].s += a[i].s;
a[nodeId].sonPerCount += a[i].sonPerCount;
}
if (a[nodeId].s == per) {
a[nodeId].sonPerCount++;
}
}
ll count1 = 0, count2 = 0;//count1表示我的值为per时,count2表示我的值为2per时
int totalPer = 0;
int cnt = 0;
ll ans = 0;
void go(int nodeId) {
if (a[nodeId].s == per) {
if (nodeId != root) {
count1 += totalPer - cnt - a[nodeId].sonPerCount;
}
cnt++;
}
//此处不能有else,因为当per=0时,子树中的总和为per的结点也会生效
if (a[nodeId].s == per * 2) {
if (nodeId != root) {
count2 += a[nodeId].sonPerCount;
if (per == 0)count2--;//因为sonPerCount包括结点自身,所以需要先去掉结点
}
}
for (int i = a[nodeId].son; ~i; i = a[i].next) {
go(i);
}
if (a[nodeId].s == per)cnt--;
}
int main() {
freopen("in.txt", "r", stdin);
int T; cin >> T;
while (T--) {
cin >> n;
int s = 0;
for (int i = 1; i <= n; i++) {
a[i].sonPerCount = 0;
a[i].son = -1;
a[i].next = -1;
}
for (int i = 1; i <= n; i++) {
int father;
cin >> a[i].v >> father;
if (father == 0) {
root = i;
}
else {
push(father, i);
}
s += a[i].v;
}
if (s % 3 == 0) {
per = s / 3;
init(root);
count1 = count2 = 0;
totalPer = 0;
for (int i = 1; i <= n; i++) {
if (a[i].s == per)totalPer++;
}
go(root);
ans = count1 / 2 + count2;
cout << ans << endl;
}
else { cout << 0 << endl; }
}
return 0;
}
注意事项
- 如果用Java写,此题会超时。因为输入量比较大
- 如果数据充分一些,1e5的复杂度有可能爆栈,所以需要使用栈的方式来遍历树(也可以先对树进行线索化)。