featuresCounts 软件用于定量,不仅可以支持gene的定量,也支持exon, gene bodies, genomic bins, chromsomal locations的定量;
官网 : http://bioinf.wehi.edu.au/featureCounts/
只需要输入reads的比对情况,就是BAM 文件,再输入一个你感兴趣的区间的注释(通常是基因或者转录本的注释gtf 文件,就可以了),所以不论是DNA seq 还是RNA seq, 这个软件都是可以定量的。
featureCounts 集成在subreads 软件中,类似 word 和 office 的关系,subreads 这个软件也有对应的 R包(Rsubreads).
featureCounts 需要两个输入文件:
1)reads的比对情况,这种信息通常都用BAM/ SAM文件来存储
2)区间注释文件,支持两种格式
最常见的gtf 格式
simplified annotation format(SAF) 格式, 示例如下
GeneID Chr Start End Strand
497097 chr1 3204563 3207049 -
497097 chr1 3411783 3411982 -
497097 chr1 3660633 3661579 -
在featureCounts 软件中,有两个核心概念:
1) feature , 类似 exon 这种
2) metafeature, 可以看做是一组 feature, 比如属于同一个gene 的外显子的组合
在定量的时候,支持对单个feature 定量(对外显子定量),也支持对meta-feature 进行定量(对基因进行定量), meta-feature 的定量是属于同一meta-features 下的所有features 的总和;
当reads 比对到2个或者以上的features 时,默认情况下,featureCounts在统计时会忽略到这部分reads, 如果你想要统计上这部分reads, 可以添加-O 参数,此时一条reads 比对到多个feature, 每个feature 定量时,都会加1,对于meta-features 来说,如果比对到多个features 属于同一个 meta-features(比如一条reads比对到了exon, 但这些exon 属于同一个gene), 则对于这个gene 而言,只会计数1次;
总之,不管对于feature 还是meta-feature, 只有比对多个不同的区间时,才会分别计数;
定量:
features 支持对单个样本定量,还支持对多个样本进行归一化
单个样本定量的用法示例
featureCounts -T 5 -t exon -g gene_id -a annotation.gtf -o counts.txt mapping.sam
多个样本归一化的用法示例
featureCounts -t exon -g gene_id -a annotation.gtf -o counts.txt library1.bam library2.bam library3.bam
下面对几个常用的选项详细解释一下:
-a : 指定的区间注释文件,默认是gtf格式
-T : 线程数,默认是1
-t : 想要统计的feature 的名称, 取值范围是gtf 文件中的第3列的值,默认是exon
-g : 想要统计的meta-feature 的名称,取值范围参考gtf 第9列注释信息,gtf 的第9列为 key=value 的格式, -g 参数可能的取值就是所有的key, 默认值是gene_id
其他的一些参数可以根据自己的目的,实际做调整。
输出结果的解读:
featuresCount 会输出两个文件,如果-o 指定的是gene, 则会产生gene 和 gene.summary 两个文件
gene 文件的部分内容如下
# Program:featureCounts v1.6.0; Command:"./featureCounts" "-T" "20" "-t" "exon" "-g" "gene_id" "-a" "hg19.gtf" "-o" "gene" "accepted_hits.bam"
Geneid Chr Start End Strand Length accepted_hits.bam
LOC102725121 chr1;chr1;chr1;chr15;chr15;chr15 11869;12613;13221;102516808;102518449;102518943 12227;12721;14362;102517949;102518557;102519301 +;+;+;-;-;- 3220 0
DDX11L1 chr1;chr1;chr1 11874;12613;13221 12227;12721;14409 +;+;+ 1652 0
WASH7P chr1;chr1;chr1;chr1;chr1;chr1;chr1;chr1;chr1;chr1;chr1 14362;14970;15796;16607;16858;17233;17606;17915;18268;24738;29321 14829;15038;15947;16765;17055;17368;17742;18061;18366;24891;29370 -;-;-;-;-;-;-;-;-;-;- 1769 88
# 号开头的注释行,记录了产生这个结果文件所用的命令,(感觉这个思路特别好,在输出的文件中记录当时的命令,便于核对)
Geneid 开头的行是表头,Geneid 代表统计的meta-features 的名称,Chr , Start, End 染色体上的位置,Strand 正负链,Length 该区间的长度,最后一列的表头是你的输入文件的名称,代表的是这个meta-feature 的count 值,即表达量
接下来看下正文部分,以第一行为例,在gtf 文件中共gene_id 为 LOC102725121 的行如下
chr1 refGene transcript 11869 14362 . + . gene_id "LOC102725121"; transcript_id "NR_148357"; gene_name "LOC102725121";
chr1 refGene exon 11869 12227 . + . gene_id "LOC102725121"; transcript_id "NR_148357"; exon_number "1"; exon_id "NR_148357.1"; gene_name "LOC102725121";
chr1 refGene exon 12613 12721 . + . gene_id "LOC102725121"; transcript_id "NR_148357"; exon_number "2"; exon_id "NR_148357.2"; gene_name "LOC102725121";
chr1 refGene exon 13221 14362 . + . gene_id "LOC102725121"; transcript_id "NR_148357"; exon_number "3"; exon_id "NR_148357.3"; gene_name "LOC102725121";
chr15 refGene transcript 102516808 102519301 . - . gene_id "LOC102725121"; transcript_id "NR_148357_2"; gene_name "LOC102725121";
chr15 refGene exon 102516808 102517949 . - . gene_id "LOC102725121"; transcript_id "NR_148357_2"; exon_number "1"; exon_id "NR_148357_2.1"; gene_name "LOC102725121";
chr15 refGene exon 102518449 102518557 . - . gene_id "LOC102725121"; transcript_id "NR_148357_2"; exon_number "2"; exon_id "NR_148357_2.2"; gene_name "LOC102725121";
chr15 refGene exon 102518943 102519301 . - . gene_id "LOC102725121"; transcript_id "NR_148357_2"; exon_number "3"; exon_id "NR_148357_2.3"; gene_name "LOC102725121";
对于 LOC102725121 这个meta-features 而言,在gtf 文件中有6个exon的记录,就是说有6个features , 所以可以看到对应的Chr, Start, End, Strand 这些列都有;分号分隔的6个值,Length 则是这6个exon 区间的的长度的总和,最后一列就是LOC102725121的表达量
这个结果文件有1个问题,就是同一个gene_id 会有多个染色体编号,这是因为gtf 文件中的gene_id 不是唯一标识符导致的,这样和我们想要的定量结果是不一样的,所以在实际分析中,应该挑选gtf 文件中的唯一标识符;
总结:
这个软件最大的特点就是运以行的非常快,几分钟就可以运行完1个人类基因组样本的定量;但是准备gtf 文件时,要确保-g 参数指定的值都是唯一标识符,才能达到预期的效果;